

Agentic API
A Task-Centric Framework for Scalable Agent Integrations

By Chris Hood

May 16, 2025

Version Author Date Changes

v 0.1 Chris Hood November 30, 2024 Introductory concept

v 0.2 Chris Hood December 20, 2025 Adjusted scope of framework

v 0.3 Chris Hood January 31, 2025 Aligned with agent-based processes

v 0.4 Chris Hood February 28, 2025 Comparison for MCP / A2A

v 0.5 Chris Hood April 4, 2025 Draft completed

v 1.0 Chris Hood May 16, 2025 Finalized version for sharing.

© 2025, Chris Hood. All rights reserved.

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 2

Agentic API..1
Executive Summary..4
1. Integration Has Changed, Our APIs Haven’t.. 6

The Rise of Agentic Interaction.. 6
The Stagnation of Interface Semantics.. 7
Toward a Language of Intent..7
The Constraint of Rigid Outputs... 8

2. The Problem with Protocol-Led Thinking...9
Protocols as a Response to Interface Deficiency...10
The Myth of Agent Collaboration..10
Structural Overhead and System Fragility..10
Clarifying the Role of Agents.. 11
Why Protocols Proliferate When Interfaces Fail... 11

3. A New Paradigm for API Design..12
CRUD’s Operational Limitations...12
Toward an Intent-Centric API Model...13
Designing APIs That Act, Not Just Serve...13
Framing Interaction in Terms of Intent and Context..14

4. ACTION Verb Taxonomy: Capability Language... 15
ACTION Examples... 15
Advantages of Structuring by ACTION...17
Building a Vocabulary of Action for Intelligent Systems... 18

5. Designing APIs for Agents, Not Just Humans... 19
Mapping Action Verbs to HTTP Methods and Resource Routes... 19
Semantically Rich Schemas and Input Structures..19
Chaining and Orchestrating Workflows.. 20
Task-First Authentication and Permissioning..20
Predictable Response and Error Patterns..20
Architecting APIs for Agentic Operation... 21

6. OpenAPI + AgenticAPI..22
Extending OpenAPI to Describe Actions..22
Adding Semantic Descriptors for Capabilities and Context..23
From Endpoints to Capabilities...24
ACTION Metadata as Interface Layer.. 24
Transforming API Contracts into Capability Schemas..25
Arazzo and AgenticAPI Synergy.. 25

7. Implementation Blueprint...28
Migrating from CRUD to ACTION...28
Structuring Payloads and Parameters..28
Input with Semantic Discoverability..30
Contextual Intelligence: Dynamically Adapting to Intent.. 33

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 3

Standardized Output with Execution Clarity and Adaptive Representation..35
Integrating Compatibility and Extensibility..36
Embedding Intent Weighting and Sensitivity.. 36
Orchestrating Complex Workflows... 36
Test Mode...43
Versioning and Compatibility Considerations... 44
Operationalizing Intent..44

8. Comparative Analysis.. 45
ACTION vs. CRUD...45
ACTION vs. GraphQL...45
ACTION vs. Traditional REST.. 46
ACTION vs. MCP / A2A Protocols..46
Core Comparison: MCP vs AgenticAPI... 47
Strategic Differentiation from MCP.. 47
Comparative Summary Table... 47

9. Organizational Impact.. 48
Impact on API Teams... 48
Strategic Business Value..49
Redesigning the Interface Layer for Scalable Intelligence... 50
API Governance with ACTION... 50

10. The Future of AI-System Integration...52
AgenticAPI as Foundational Infrastructure...52
ACTION Registries and API Marketplaces...52
Domain-Specific Verb Libraries.. 53
Standards and Specification Integration...53
Developer Tooling and Enablement..54
The Foundation for Intent-Driven Integration..54

11. APIs That Enable Action, Not Abstraction..55
Appendix A: Full ACTION Verb Reference... 56

Acquire... 56
Compute...56
Transact..56
Integrate... 56
Orchestrate...56
Notify.. 56

Appendix B: Glossary of Terms.. 63
References...66
About the Author(s).. 70

Chris Hood...70

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 4

Executive Summary
As AI agents become embedded in enterprise systems, the interface between agents and
services has come under scrutiny. While some propose agent-to-agent protocols like MCP or
A2A to support coordination, these approaches address the wrong problem, introducing
complexity without solving interface deficiencies (Wooldridge & Jennings, 1995). The core
challenge is not a lack of inter-agent standards, but the absence of APIs designed for task
execution and semantic clarity.

Existing APIs, built around CRUD operations, are optimized for data access, not for
representing actionable intent (Fielding & Taylor, 2002). This forces agents to infer meaning
from endpoints not designed for Artificial Intelligence (AI) and AI Agents use.

We propose AgenticAPI, a task-oriented interface specification that enables agents to discover,
understand, and invoke system capabilities without protocol mediation. AgenticAPI supports
Agent Experience (AX) by providing intuitive, action-oriented APIs that ensure seamless task
execution for AI agents, akin to user and developer experiences. Built on existing API
infrastructure, AgenticAPI introduces a standardized action model supporting intent expression,
contextual execution, and composable workflows.

At its core is the ACTION taxonomy, comprising six task categories: Acquire, Compute,
Transact, Integrate, Orchestrate, and Notify. These serve as semantically meaningful
alternatives to CRUD, enabling contextually relevant agent interactions (Horvitz, 1999). The
model supports verbs like search, summarize, recommend, book, and notify, detailed in
Section 4 and Appendix A.

AgenticAPI aligns with principles including:

● Contextual Alignment: APIs represent actions within context, including availability.
● Semantic Discoverability: Verbs convey intent in machine-readable formats.
● Execution Clarity: Endpoints define preconditions and side effects.
● Compatibility and Extensibility: Extends OpenAPI conventions.
● Intent Weighting: Includes variables like priority or confidence.
● Adaptive Output: Supports multiple response formats, JSON, JS, Language blob.

AgenticAPI simplifies integration, enhances interoperability, and supports automation,
particularly in finance, healthcare, and logistics. It maintains backward compatibility while
establishing a foundation for agent-native systems. The ACTION model’s alignment with human
task language reduces translation overhead, enabling precise execution.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 5

This paper contends that AI-system integration depends on APIs exposing intent and context,
not agent-to-agent protocols. AgenticAPI and ACTION provide a pathway to effective, resilient,
agent-driven architectures.

A proof of concept is in development to validate AgenticAPI’s efficacy, testing reduced
integration complexity and enhanced task execution. This PoC focuses on finance and
healthcare, simulating standard tasks like booking to demonstrate agent usability and system
scalability:

● Basic Task: Tests a standard task like BOOK /meeting to demonstrate task-oriented
execution.

● Agent Connection: Connects an agent to AgenticAPI, invoking actions via DISCOVER
/actions.

● Output Validation: Validates conversational and JSON outputs (e.g., meeting
confirmation) for accuracy.

● Error Reduction: Measures error rates using TEST /action to ensure reliability.

● Speed and Scale: Evaluates execution speed and scalability under high-frequency
requests.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 6

1. Integration Has Changed, Our APIs Haven’t
The history of systems integration is marked by successive efforts to reduce manual
coordination and increase system interoperability. Early enterprise systems relied on tightly
coupled modules, point-to-point custom integrations, or human-mediated workflows for data
exchange and task execution. As businesses digitized and distributed architectures became
more prevalent, integration strategies evolved in response to the growing need for automation,
modularity, and scale.

The introduction of Service-Oriented Architecture (SOA) formalized the notion of encapsulated
services that could be reused across systems. However, SOA’s implementation was often
hindered by its reliance on heavyweight standards (e.g., SOAP, WSDL) and centralized
governance models that limited flexibility. The emergence of RESTful APIs represented a
pragmatic departure from these earlier paradigms, emphasizing simplicity, statelessness, and
uniform interfaces. REST, when coupled with HTTP and the CRUD (Create, Read, Update,

Delete) model, became the dominant pattern for web and system integration throughout the
2010s (Wikipedia, 2025).

REST APIs significantly lowered the barrier for integrating across systems, enabling developers
to expose services and resources in a language-agnostic, platform-independent manner. Tools
like Swagger (now OpenAPI), combined with JSON serialization, provided human-readable,
machine-consumable specifications that became the backbone of modern software ecosystems.

Despite these advancements, REST and CRUD-based APIs were designed primarily for human
developers, not intelligent systems. The structure and semantics of typical APIs assume the
presence of a developer or tightly coupled application logic that understands the endpoint,
interprets its parameters, and manually orchestrates workflows across calls (The New Stack,
2025). Even as tools have emerged to automate parts of this process (e.g., SDK generation,
workflow engines), the design of the APIs themselves has remained fundamentally static and
data-centric.

The Rise of Agentic Interaction
The current wave of AI-based automation, particularly with the proliferation of AI agents,
represents a significant departure from previous integration models. Unlike traditional
applications that consume APIs in rigid, predefined ways, AI agents are expected to operate
more flexibly. They simulate user behavior, reason across workflows, and interact with services
based on goals, not just procedural logic. In many cases, they do so without explicit hardcoding,
instead inferring actions from context, language, or prior training (Nordic APIs, 2025).

Agent Experience (AX) demands APIs that enable seamless task execution, such as booking
meetings or summarizing reports, with machine-readable intent. AgenticAPI addresses AX by

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 7

delivering task-focused endpoints that agents can discover and invoke precisely, overcoming
the semantic limitations of traditional interfaces.

Critically, these agents are task-oriented, not resource-oriented. Whereas CRUD-based APIs
expose operations such as GET /users or POST /orders, agents typically require interfaces
that align with goals such as “book a meeting,” “summarize this report,” or “notify the team lead.”
These operations often span multiple API calls, require contextual awareness, and rely on
higher-level semantics to be executed successfully (Microsoft Learn, 2024).

As a result, traditional API interfaces designed for granular resource manipulation do not expose
sufficient intent-level semantics for agents to plan, execute, and complete complex tasks. The
agent must interpret vague or inconsistent endpoint names, understand undocumented side
effects, and chain together atomic operations with uncertain outcomes. This lack of
expressiveness becomes a bottleneck in agentic automation and invites brittle,
non-generalizable implementations.

The Stagnation of Interface Semantics

While the execution environment and computational capabilities of AI agents have advanced
rapidly, API interfaces themselves have largely stagnated in terms of semantic clarity. Most
REST APIs continue to reflect internal data structures rather than external user intent. For
example, endpoints like GET /items, POST /purchase, or PUT /status require a degree
of contextual knowledge that must be manually encoded or inferred from documentation. The
onus is placed on the consuming system to understand what an endpoint does, how it relates to
a broader task, and under what conditions it should be used (The New Stack, 2025).

This disconnect creates a significant integration mismatch. Agents are expected to act on behalf
of users or systems, yet the interfaces available to them lack the affordances necessary for
informed action. The agent, therefore, must simulate developer-like behavior by reading
documentation, inferring workflows, and recovering from ambiguous failures, rather than acting
as an operational executor with clear, discoverable options.

Toward a Language of Intent

To support agent-based automation, APIs must evolve beyond CRUD and expose task-oriented
capabilities in a consistent and machine-interpretable format (Hood, 2024; C.D., 2022). This
requires a shift in API design philosophy: from exposing data endpoints to exposing actions. In
this model, the API does not simply offer access to records; it declares the operations that can
be meaningfully performed within a given context (DZone, 2015; Better Programming, 2023).

A language of intent, structured around verbs rather than nouns, enables agents to align
interface capabilities with high-level goals. For example, an agent attempting to perform a travel
booking should not need to infer that POST /flights means “book a flight,” or that a PATCH

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 8

call to a calendar entry can be used to reschedule an appointment. Instead, interfaces should
declare operations such as BOOK /flight, SCHEDULE /meeting, or CANCEL
/reservation, allowing the agent to identify executable tasks without semantic translation.

This approach does not discard existing web standards or protocol conventions. Rather, it
augments them by enriching the semantic layer exposed to consumers, particularly AI agents.
Such a shift facilitates not only greater agent logic but also more robust developer tooling, better
documentation practices, and improved system maintainability through contracts of intent.

The shift from human-coded automation to agent-driven task execution requires a
corresponding shift in API design. While CRUD-based REST APIs have served well in
data-centric architectures, they are insufficient for the demands of modern AI agents tasked with
simulating real-world operations.

The Constraint of Rigid Outputs

Traditional APIs typically deliver fixed response formats, such as JSON payloads, designed for
developer parsing and UI rendering (Fielding & Taylor, 2002). However, AI agents, which
operate across diverse tasks and contexts, require adaptive outputs to support dynamic
workflows (Horvitz, 1999; Wooldridge & Jennings, 1995). An agent might need structured JSON
for data analysis, a natural language summary for communication, or executable code for
downstream automation. The static nature of JSON responses limits agents’ ability to process
outputs adaptively, forcing reliance on brittle parsing or post-processing logic.

In contrast, agentic interfaces must support flexible, context-sensitive outputs, including
structured JSON, text blobs, or formats like JavaScript, PDFs, or natural language strings
(Berners-Lee et al., 2001; Microsoft, 2024). Semantic web research emphasizes
machine-interpretable, adaptive data representations such as JSON-LD (Lanthaler & Gütl,
2013). For example, an agent calling SCHEDULE /meeting?output_type=natural_lang
might receive “Your meeting with Jamie is confirmed for Thursday at 2 PM,” while
output_type=json returns structured data for calendar integration. This multimodal capability
aligns with mixed-initiative principles, where systems adapt outputs to user or agent intent
(Horvitz, 1999).

Industry frameworks like Microsoft’s Semantic Kernel already demonstrate this, enabling agents
to process language, code, or data based on task needs. While standards like OpenAPI support
extensible formats, they require further evolution to fully meet agentic requirements (OpenAPI
Initiative, 2021). Without this flexibility, APIs risk becoming automation bottlenecks, forcing
agents to work around rigid outputs (Gupta, 2025). To scale agent-native systems, outputs must
be treated as dynamic artifacts of intent, tailored to execution context and downstream logic.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 9

2. The Problem with Protocol-Led Thinking
As AI agents increasingly serve as intermediaries between users and digital systems, interest in
communication protocols facilitating agent coordination has surged. Notable proposals include
the Model Context Protocol (MCP), Agent Communication Protocol (ACP), and Agent-to-Agent
(A2A) frameworks, which aim to standardize mechanisms such as discovery, message passing,
and task delegation, reminiscent of early web service protocols for machine-to-machine
interactions. While these protocols address interoperability in distributed systems, their
development often stems from a flawed assumption: practical AI agent functionality requires
peer-to-peer collaboration. Modern AI agents function as context-sensitive pattern matchers
driven by inference, not negotiation (Wooldridge, 2020).

Anthropic’s introduction of MCP frames the protocol as a universal standard to connect AI
systems with data sources, to improve model responsiveness by eliminating integration silos.
According to their announcement, “open technologies like the Model Context Protocol are the
bridges that connect AI to real-world applications,” designed to “replace today’s fragmented
integrations with a more sustainable architecture” (Anthropic, 2024). The MCP model defines
client-server roles, where AI applications can retrieve context or interact with enterprise data
through long-lived server connections, offering an abstraction layer over traditional system APIs.

The enthusiasm for agent-to-agent protocols reflects not an architectural necessity but a
deficiency in interface design. For instance, MCP introduces complexities, such as long-lived
state management, lack of robust authentication, and poor compatibility with stateless
infrastructures like REST APIs or serverless functions, without addressing the core bottleneck:
agents’ inability to access semantically rich APIs for discovering and executing meaningful
actions (Masood, 2025).

MCP’s approach, which grants agents raw access to databases and file systems, assumes
intelligence emerges from unrestricted data access. However, this bypasses critical safeguards
like rate limiting, audit logging, and access control, which are standard in modern API
ecosystems.

These shortcomings necessitate architectural workarounds that obscure responsibility, increase
latency, and complicate recovery, particularly in asynchronous or multi-step workflows. What is
often termed “agent collaboration” is, in practice, distributed control flow better suited to
task-oriented interfaces than complex protocol stacks (Sun, 2025).

Instead of introducing new communication layers between agents, a more scalable solution is to
evolve the API layer. By exposing clearly defined actions, embedding semantic metadata, and
supporting contextual execution, APIs can become self-describing and machine-operable
interfaces for agent-driven execution.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 10

Protocols as a Response to Interface Deficiency

Agentic protocols like MCP and ACP are designed to address challenges such as:

● How can one agent discover tools known to another?
● How can agents share user or task context?
● How can agents delegate or negotiate task ownership?
● How can agents invoke tools with unknown schemas?

While theoretically valid, these challenges are not unique to AI agents and do not necessitate
novel protocol development. Instead, they highlight the absence of machine-interpretable,
intent-expressive APIs that articulate system capabilities and their conditions and expected
outcomes (Yang et al., 2025). The rise of agent-level protocols is thus a symptom of
underpowered interface design rather than an architectural imperative. With robust APIs, agents
could discover capabilities and execute actions without negotiation or delegation.

The Myth of Agent Collaboration

The discourse surrounding agent protocols draws heavily from multi-agent systems (MAS)
theory, where agents are modeled as autonomous entities with beliefs, desires, and reasoning
capabilities. This perspective assumes agents coordinate to achieve distributed objectives.
However, modern AI agents lack such autonomy. They do not formulate persistent plans,
evaluate trade-offs, or engage in deliberative negotiation. Instead, their behavior resembles
instructional pattern completion, responding to inputs, inferring next steps, and invoking tools
(Hong et al., 2024).

What appears as agent collaboration is typically a sequence of tool calls within a single agent or
workflow runner. These sequences do not require peer-to-peer messaging but relatively
straightforward, callable interfaces that describe actions in terms of task intent, not raw data
access (Sun, 2025). Over-reliance on MAS-inspired protocols risks misaligning system design
with the practical capabilities of current AI agents.

Structural Overhead and System Fragility

Inter-agent protocols introduce architectural complexity in several ways:

● Discovery Overhead: Agents must maintain registries of peers, service endpoints, and
protocol capabilities, increasing latency and failure points.

● Context Serialization: Effective communication requires serializing and transmitting
context—goals, task states, and execution history—in mutually understood formats,
necessitating complex schema and vocabulary standardization.

● Coordination Logic: Protocols imply task negotiation, ownership transfer, or consensus
mechanisms, which must be hard-coded, resulting in brittle interdependencies.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 11

● Debugging Complexity: Tracing failures across distributed agent chains, reliant on
ephemeral messages or stochastic inference, creates significant observability
challenges.

These factors elevate agent integration's cognitive and operational burden, offering minimal
performance or robustness gains compared to simpler, direct API invocation models (Liddle,
2025). Protocol-led architectures abstract the interface layer rather than enhance it.

Clarifying the Role of Agents

Treating agents as peer systems rather than automation interfaces has driven architectural
choices prioritizing theoretical completeness over practical utility. A grounded view positions
agents as interfaces for intent interpretation and task execution, translating natural language or
instructions into actionable system calls (Hong et al., 2024). Their role is not to communicate
with each other via new protocols but to leverage clear APIs for action execution.

If APIs are designed with semantic metadata, contextual affordances, and standardized
execution formats, agents’ tasks become manageable. They can discover available operations,
select based on relevance or constraints, and invoke them without protocol handshakes
(Masood, 2025). The bottleneck shifts from inter-agent abstraction to interface clarity.

Why Protocols Proliferate When Interfaces Fail

Protocols like MCP and ACP emerge to address coordination challenges that arise only when
APIs are semantically opaque or underpowered. They are compensatory mechanisms, not
foundational requirements, built on the premise that intent must be brokered through additional
messaging layers. This paper advocates an alternative: evolving API design to expose actions,
not just data, with machine-readable intent formalization. Such interfaces could eliminate the
need for agent-to-agent communication in most cases, providing a scalable foundation for
intelligent task execution.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 12

3. A New Paradigm for API Design
For over two decades, API design has been dominated by the CRUD model, Create, Read,
Update, Delete, implemented over HTTP as POST, GET, PUT/PATCH, and DELETE, respectively.
These operations provide a simple, consistent interface for manipulating data resources,
aligning with object persistence models and facilitating intuitive resource mapping in RESTful
architectures (Fielding & Taylor, 2002). CRUD’s conceptual simplicity enables developers to
reason about system interactions through predictable, idempotent actions, supporting tooling
standardization, automated SDK generation, and alignment with web architecture principles like
statelessness and uniform interfaces.

Despite its strengths, CRUD’s effectiveness wanes when APIs must support task execution
rather than resource manipulation. As systems evolve to accommodate AI agents, automation
frameworks, and context-aware orchestration, CRUD reveals limitations that constrain
expressiveness, increase cognitive load, and misalign interfaces with user intent (Mouat, 2024).
These shortcomings hinder the scalability and adaptability of agent-driven systems.

CRUD’s Operational Limitations

From a functional perspective, CRUD is insufficient for modeling the diversity and granularity of
real-world operations that intelligent agents must perform. Consider the following scenarios:

● An agent is instructed to “recommend three relevant articles based on a user’s reading
history.”

● A financial automation system must “analyze spending behavior and trigger alerts when
anomalies are detected.”

● A scheduling assistant is expected to “book the earliest available meeting slot with all
required participants.”

These tasks involve multi-step processes, conditional logic, or derived reasoning that cannot be
naturally expressed through CRUD operations. Forcing them into CRUD leads to overloaded
endpoints, ambiguous semantics, and ad hoc conventions. For example, a POST /alerts
might variably “send,” “schedule,” or “trigger” an alert, lacking semantic transparency for
consuming agents. Moreover, CRUD prioritizes data-centricity over capability expression,
exposing what data is stored rather than what actions can be performed, forcing agents to
reverse-engineer workflows by navigating resource structures.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 13

Toward an Intent-Centric API Model

To support agent-driven automation, APIs must be restructured around tasks, not tables. The
unit of integration must shift from "resource" to "action." This demands a departure from CRUD's
noun-based framing and the adoption of a verb-oriented interface language, to a model that
exposes intent, supports contextual variation, and reflects real-world operations in
machine-readable terms.

To address this need, we introduce the ACTION framework, a six-category taxonomy of API
operations designed to support task-level interaction:

1. Acquire: Retrieve information with contextual filters or purpose-driven queries. Includes
operations such as search, scan, monitor, or extract.

2. Compute: Transform, analyze, or summarize data using embedded or declarative logic.
Encompasses verbs like summarize, calculate, validate, or rank.

3. Transact: Execute operations that alter system state or confirm commitments. Includes
purchase, book, cancel, register, or approve.

4. Integrate: Combine or synchronize information across services or domains. Verbs
include merge, sync, map, or link.

5. Orchestrate: Manage workflows involving sequencing, conditions, or parallel execution.
Covers schedule, chain, batch, or retry.

6. Notify: Communicate updates, results, or alerts to systems or users. Includes notify,
alert, broadcast, or escalate.

Unlike CRUD’s symmetrical operations, the ACTION framework embraces asymmetry,
recognizing that not all systems support all verbs or expose all resources directly (Allamaraju,
2023). This taxonomy prioritizes executable affordances, enabling agents to interact with
systems based on task intent.

Designing APIs That Act, Not Just Serve

By adopting ACTION as the basis for API design, developers can construct interfaces that are
more easily interpreted, invoked, and composed by agents. The emphasis shifts from exposing
data models to declaring what the system can do, in what context, and with what constraints.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 14

This shift introduces several design advantages:

● Semantic Precision: An endpoint such as RECOMMEND /articles conveys task
intent directly, reducing the need for implicit assumptions or out-of-band documentation.

● Contextual Variation: The same verb can be specialized through parameterization
(e.g., SUMMARIZE /document?id=123&mode=bullets) or scoped behaviorally to
reflect environmental factors.

● Chaining and Composition: Actions can be composed predictably by agents when
verbs expose execution outcomes, preconditions, and task duration estimates.

Importantly, ACTION APIs are not incompatible with REST. Rather, they extend the REST
paradigm by layering a semantic intent model atop the traditional HTTP interface. This allows
for hybrid implementation strategies where legacy endpoints coexist with verb-oriented aliases,
supporting incremental migration and backward compatibility.

Framing Interaction in Terms of Intent and Context

One of the most significant benefits of the ACTION model is its alignment with how agents
simulate behavior. AI agents, particularly those driven by language models or rule-based
reasoning, operate on goal-based planning. They require knowledge of what operations are
available, what parameters are required, and what result structures are returned.

In a CRUD model, this information is obfuscated by the tight coupling of endpoint names with
data structures. In the ACTION model, the API itself serves as a capability surface, an
operational map that agents can explore, evaluate, and invoke based on their understanding of
task context.

Furthermore, ACTION supports contextual enrichment. Operations can be annotated with
metadata such as priority, cost, estimated time, side effects, or resource consumption. This
enables agents to make decisions not just on task feasibility, but on task desirability.

The CRUD model, while effective for traditional resource manipulation, lacks the semantic depth
and operational granularity required for agentic task execution. It exposes structure, not
purpose. It defines data flows, not intent.

The ACTION framework reorients API design around a verb-first, task-oriented model, enabling
APIs to function as interfaces for execution, not just access. By embedding intent and semantic
clarity into the API surface, ACTION enables AI agents to act with precision, adaptability, and
confidence without the need for inter-agent mediation or speculative interpretation.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 15

4. ACTION Verb Taxonomy: Capability Language
To enable AI agents to operate effectively within enterprise systems, APIs must transcend
resource exposure and declare executable capabilities. Traditional APIs, often aligned with
object storage or relational schemas, prioritize data manipulation through CRUD operations
(Create, Read, Update, Delete). While efficient for data-centric tasks, these interfaces offer
limited guidance for agents executing complex, intent-driven tasks (Allamaraju, 2023). The
ACTION framework, introduced previously, reorients API design around task-centric operations
through six categories: Acquire, Compute, Transact, Integrate, Orchestrate, and Notify. These
categories organize APIs by their operational effect, not data structure, providing a semantic
scaffold for agent interactions.

Standardizing verbs within these categories is critical to convey capability and affordance. Verbs
enable agents to infer endpoint functionality before invocation, reducing ambiguity and
enhancing interoperability. In this paper, Action Verbs (Hood, 2024) are distinguished from
HTTP methods (e.g., GET, POST) and CRUD operations, focusing on semantic intent at the
task level to articulate what a service can achieve, not merely what data it exposes (Richardson,
2025).

This section proposes a taxonomy of standardized Action Verbs, organized by ACTION
category. This vocabulary is not exhaustive but provides a foundational, extensible framework
for semantic API documentation, dynamic capability discovery, and consistent task modeling
across services (Hong et al., 2024). By aligning operations with meaningful verbs, APIs become
more interpretable and interoperable for AI agents.

ACTION Examples

Acquire

Purpose: To retrieve, discover, or extract data from internal or external sources, typically with an
intent to observe, filter, or assess.

● search – Locate data based on query criteria
● check – Retrieve or verify the state of a resource
● scan – Sweep data sources for conditions or signals
● discover – Identify new or related entities
● extract – Pull structured or unstructured elements from larger datasets
● analyze – Perform observational analysis or pattern detection
● monitor – Continuously track a data source for changes
● retrieve – Access specific known data assets

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 16

Compute

Purpose: To process or transform information into derivative outputs such as summaries,
classifications, decisions, or transformations.

● summarize – Generate condensed representations of source material
● validate – Assess input data against known rules or constraints
● classify – Assign data to known categories
● calculate – Perform numeric or logical operations
● predict – Estimate future states based on models
● evaluate – Compare against benchmarks, rules, or standards
● translate – Convert between languages or formats
● rank – Order data based on defined criteria
● filter – Exclude or include data based on logic

Transact

Purpose: To commit or perform operations that result in state change, record persistence, or
completion of an external action.

● book – Reserve a resource or time
● purchase – Complete a commercial transaction
● register – Enroll an entity or user in a process or system
● cancel – Revoke or reverse a scheduled transaction
● submit – Provide a request, application, or form for processing
● authorize – Approve permissions or credentials
● sign – Digitally or physically confirm agreement or execution
● transfer – Move assets, ownership, or records

Integrate

Purpose: To connect, synchronize, or unify data, services, or logic across systems or silos.

● merge – Combine data or entities
● sync – Align records across systems
● link – Associate entities for tracking or logic
● map – Define relationships between structures or datasets
● connect – Establish a relationship or conduit between systems

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 17

● import – Bring external data into a local context
● embed – Insert one component or dataset into another

Orchestrate

Purpose: To coordinate sequences of tasks, workflows, retries, or conditional logic across time,
systems, or agents.

● schedule – Define time-based execution of tasks
● chain – Link sequential actions for composite execution
● batch – Group tasks for bulk execution
● retry – Reattempt failed or incomplete tasks
● delegate – Assign task execution to another entity
● escalate – Elevate priority or reroute a task due to failure or exception
● pause – Temporarily halt a process or action
● resume – Restart a paused or deferred task

Notify

Purpose: To generate or deliver signals, messages, or outputs to systems, users, or other
agents.

● notify – Inform a recipient of a state change or event
● alert – Send a high-priority or time-sensitive message
● broadcast – Disseminate information to multiple recipients
● report – Generate a structured summary or update
● reply – Respond to an incoming request or message
● log – Persist information for auditing or future reference
● publish – Make content or results available to a broader audience

Advantages of Structuring by ACTION

● Thematic consistency: Reinforces ACTION as both a design philosophy and
implementation framework.

● Ease of mapping: Developers and agents can easily associate API functions with their
domain category.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 18

● Extensibility: Each category can grow with domain-specific sub-verbs (e.g.,
reconcile under Compute for finance, or triage under Orchestrate for healthcare).

● Clarity in tooling: Enables standardized documentation and metadata generation,
grouped by operational domain.

Building a Vocabulary of Action for Intelligent Systems

The ACTION verb taxonomy provides a structured lexicon of operational intent, organized under
the six ACTION pillars. This vocabulary offers a semantically rich, discoverable, and
machine-readable foundation for APIs, mapping the capabilities agents require in modern
service ecosystems. While not exhaustive, the verbs are generalizable, allowing extensions like
TRIAGE (healthcare) or RECONCILE (finance) under relevant categories to support
domain-specific needs.

This taxonomy enables agent capability discovery and automated API composition (Hood,
2025). By tagging interfaces with clear verbs, agents can discern operational intent, reducing
reliance on prompt engineering and improving execution reliability. Semantic affordances also
enhance orchestration logic, making workflows more resilient (Hong et al., 2024).

Subsequent sections will explore implementing these verbs, documenting them via OpenAPI
extensions, and integrating them into the AgenticAPI Specification for next-generation intelligent
interfaces.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 19

5. Designing APIs for Agents, Not Just Humans
Historically, API design has been human-centered, optimized for consumption by developers
who interpret documentation, experiment with payloads, and manually compose workflows.
While this model has proven effective for traditional client-server systems, it poses structural
limitations for the new generation of AI agents that are expected to interpret, invoke, and chain
operations with minimal human intervention.

Agentic systems require APIs that are not only syntactically valid but also semantically
interpretable. These APIs must expose both capabilities and context to allow agents to reason
over options, select appropriate operations, and execute tasks with predictable outcomes.
Transitioning from human-first to agent-ready design involves rethinking verb mapping,
input/output structures, and affordance communication.

Mapping Action Verbs to HTTP Methods and Resource Routes

HTTP’s limited verb set (GET, POST, PUT, PATCH, DELETE) can serve as a transport layer for
richer action semantics within the ACTION framework. Intent is conveyed not through HTTP
methods but via explicit verb-oriented resource paths and payloads.

For example:

POST /recommendations becomes RECOMMEND /products?user=123&budget=500
GET /summaries is restructured as SUMMARIZE /document?id=abc123

This approach requires defining action verbs as first-class path segments, either directly (e.g.,
/ACTION/target) or as clearly annotated metadata within OpenAPI specifications. These
routes should include contextual parameters that signal the intent and operational constraints of
the action, enabling agents to infer preconditions and desired outcomes.

Semantically Rich Schemas and Input Structures

Agents rely on schema metadata not only to format requests but also to understand the
conceptual function of a given operation. Therefore, parameter definitions must move beyond
basic data types and include:

● Descriptive annotations: Clarify purpose, unit, and behavioral implications

● Enumerated values: Limit ambiguity and define valid states

● Examples: Provide canonical use cases to support model inference

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 20

● Contextual modifiers: Allow for task customization (e.g., verbosity, priority, output style)

Payloads should be shaped to express intent modifiers as clearly as core data. For instance, a
RECOMMEND action may include optional fields like context, goal, or restrictions that
influence task logic. Such schemas make actions expressive and controllable, aligning with
agent reasoning patterns (Hong et al., 2024).

Chaining and Orchestrating Workflows

Agent-friendly APIs must support complex tasks that span multiple operations, a critical aspect
of Agent Experience (AX). To enable chaining and orchestration, AgenticAPI provides
predictable naming (e.g., SCHEDULE, RESCHEDULE), status metadata, and retry mechanisms,
aligning with the Orchestrate category’s focus on workflow coordination. Aggregated endpoints
like BATCH /actions streamline multi-step processes by combining operations, reducing
latency and enhancing usability. These design patterns ensure agents can execute tasks
efficiently without external orchestration, as detailed in the implementation blueprint (Section 7).

Task-First Authentication and Permissioning
Agentic systems often operate on behalf of users or other systems, requiring dynamic
authentication contexts. A task-first API must therefore:

● Support delegated authorization (e.g., OAuth 2.0 scopes aligned with specific verbs).

● Allow for capability scoping at the action level (e.g., “Can this agent ANALYZE but not
PUBLISH?”).

● Use auditable tokens that encode not only identity but also task context and
permissions.

These requirements point to a future where least-privilege execution reduces security risks while
supporting fine-grained task access. AgenticAPI proposes a task-oriented authentication model
aligned with these principles. Building on OAuth 2.0, the design ties scopes directly to specific
actions (e.g., scope: summarize_document), enabling agents to operate within clearly
authorized task boundaries. Unlike protocol-based approaches such as MCP’s OAuth 2.1, which
emphasize tool-level access, the AgenticAPI model introduces the concept of encoding task
context within auditable tokens—enhancing precision, traceability, and safety in agent-driven
workflows.

Predictable Response and Error Patterns

Agents require consistent, machine-parsable responses to avoid reliance on ad hoc error
messages. Responses must:

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 21

● Be uniform across verbs and implementations.

● Include standardized keys (e.g., status, result, next_action, errors).

● Provide descriptive remediation options for automated fallback.

● Support extensible metadata (e.g., latency, costs, human intervention needs).

Error responses should not merely report failure but indicate remediation options, enabling agents to
adapt their strategy or escalate appropriately. Standardized responses eliminate quirks by enforcing
consistent schemas and documenting edge cases via x-agent-hints, enhancing agent reliability.

Architecting APIs for Agentic Operation

Agentic API design shifts from resource manipulation to task specification. The ACTION
framework provides a semantic foundation, but implementation requires embedding intent,
context, and execution patterns into the API interface. By mapping verbs to paths, enriching
schemas with metadata, and standardizing orchestration, developers create interfaces that are
human-readable and machine-operational. Task-scoped authentication and predictable
responses further enable intelligent execution.

The next section extends this philosophy into formal documentation, adapting OpenAPI to
represent actions, preconditions, and execution semantics within the AgenticAPI Specification.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 22

6. OpenAPI + AgenticAPI
The OpenAPI Specification (OAS) is the de facto standard for describing RESTful APIs,
enabling documentation, client libraries, and testing frameworks from machine-readable
contracts (OpenAPI Initiative, 2023). However, OAS focuses on structural descriptions, including
endpoints, parameters, and data formats, rather than semantic intent. For AI agents, which
cannot infer purpose from naming conventions or ambiguous documentation, this limitation
hinders task execution. Agents require explicit declarations of actions, contexts, and outcomes.
The AgenticAPI Specification extends OpenAPI to prioritize intent expression, shifting API
discovery from listing endpoints to identifying actionable capabilities.

As agents become more capable of task execution, the question arises: can AI agents negotiate
API contracts dynamically? Traditional API design assumes predefined schemas and static
interfaces. However, agent-driven workflows often involve ephemeral needs, dynamic tooling,
and context-specific actions. Alternative models such as the speculative FLEX design pattern
(Hood, 2025) explore how APIs might adapt in real time, not only by spinning up ephemeral
interfaces when needed, but also by enabling nested and connected actions within a single
transactional scope.

In this model, an agent might initiate a top-level request that internally triggers multiple
sub-actions, all composed and resolved based on intent. The interface is no longer a fixed
surface; it becomes an active workflow scaffold. AgenticAPI supports this evolution by
embedding intent directly into the interface layer, enabling systems to move from static contract
binding to real-time capability discovery, composition, and execution.

Extending OpenAPI to Describe Actions

AgenticAPI augments OpenAPI with structured extensions to describe actions, not just
endpoints or methods. Operations are annotated with verb semantics tied to the six ACTION
categories: Acquire, Compute, Transact, Integrate, Orchestrate, and Notify. Each operation
object (e.g., paths["/summarize"].post) includes a custom x-action block with:

● action_verb: A machine-readable semantic label for the task (e.g., summarize,
authorize, schedule).

● action_category: One of the six primitives defined by the ACTION model: Acquire,
Compute, Transact, Integrate, Orchestrate, Notify.

● intent_description: A concise summary of the task’s purpose and its intended
outcome.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 23

● contextual_constraints: Optional conditions that govern when and how the action
is available, such as user roles, system states, or environmental variables.

● preconditions: Explicit declarations of dependencies or system states that must
exist before execution.

● side_effects: An outline of any changes the action may trigger, such as state
updates, notifications, or downstream impacts.

● intent_weighting: Optional metadata for agents to prioritize or evaluate the task,
including factors like confidence, cost, urgency, or risk level.

● output: A structured description of expected results, including data types, formats,
and representations such as JSON, JavaScript, or natural language text (supporting the
Adaptive Output principle).

This structure enables agents to reason about what the API is capable of doing over what
data it can return.

Adding Semantic Descriptors for Capabilities and Context

In addition to describing operations, API schemas must encode the conditions and nuances
of task execution. This includes:

● Task Modifiers: Optional parameters that adjust execution (e.g., verbosity level, priority,
summarization mode)

● Capability Flags: Boolean indicators such as x-supports-batch, x-retryable,
x-human-review-required

● Execution Profiles: Metadata blocks that indicate expected latency, cost, or reliability

● Agent Guidance: Optional x-agent-hints providing model-specific prompt
instructions or fallback mechanisms

These descriptors provide agents with operational knowledge typically buried in documentation
or left to developer intuition. By surfacing this metadata in the API spec itself, we improve
discoverability, enable real-time decision-making, and reduce the burden of pretraining or
fine-tuning on interface behavior.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 24

From Endpoints to Capabilities

Traditional API discovery mechanisms are name-based and hierarchical. Agents using such
mechanisms can retrieve an OpenAPI document, parse its paths, and see which HTTP methods
are supported. However, this tells them nothing about what the service actually does.

AgenticAPI transforms the discovery process from an endpoint enumeration model to a
capability-oriented model. Rather than scanning for GET /products, an agent can query:

● What actions are available in the compute category?

● Are there any summarize operations scoped to text documents?

● What actions require authentication with scope data:write?

● Which endpoints can notify external systems asynchronously?

This model enables runtime introspection. Agents can select operations dynamically, based on
current goals, permissions, and context without relying on brittle endpoint naming or hardcoded
integration logic.

ACTION Metadata as Interface Layer

ACTION metadata provides a semantic bridge between interface and execution. It turns opaque
API routes into declarative capability statements. This enables a new form of composition:
where agents build execution plans based on declared verbs, known contexts, and expected
outcomes rather than parsing resource trees and chaining HTTP requests blindly.

Moreover, this metadata layer facilitates:

● Agent-side planning and optimization (e.g., comparing latency estimates or
precondition trees)

● Cross-service compatibility checks (e.g., determining if two services share a common
orchestration verb)

● Tool abstraction (e.g., allowing different services that implement summarize to be
interchangeable based on performance)

● API marketplaces or registries organized by action categories, not REST paths

This creates an environment where APIs expose what can be done, when, and why.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 25

Transforming API Contracts into Capability Schemas

OpenAPI excels at documenting resource-based APIs but lacks semantic affordances for agent
interaction (OpenAPI Initiative, 2023). AgenticAPI’s extensions make intent explicit, categorizing
operations with ACTION verbs and enriching definitions with contextual metadata. By shifting
from endpoint-focused to action-focused semantics, AgenticAPI transforms OpenAPI into a
capability schema for intelligent systems, enabling task-oriented discovery and execution.

Arazzo and AgenticAPI Synergy

The Arazzo Specification (version 1.0.1, January 2025), introduced by the OpenAPI Initiative,
complements AgenticAPI by providing a standardized mechanism to describe deterministic API
workflows or sequences of API calls and their dependencies to achieve specific business
outcomes. While OpenAPI defines the surface area of individual APIs, Arazzo acts as a
“conveyor belt,” articulating how multiple APIs interact to complete tasks like user enrollment or
flight booking. This synergy enhances AgenticAPI’s orchestration capabilities, particularly for AI
agents operating in enterprise environments with diverse microservices and SaaS integrations.

Arazzo’s workflow objects, which include sourceDescriptions, workflowId, inputs, and
steps, align closely with AgenticAPI’s Orchestrate category and CHAIN /request endpoint
(Section 7). By integrating Arazzo’s structure, AgenticAPI can extend its DISCOVER /actions
endpoint to include workflow metadata, enabling agents to query multi-API task sequences. For
example, a workflow for booking a flight might involve CHECK /availability, BOOK
/flight, and NOTIFY /user, with dependencies and success criteria defined explicitly.

Example: Workflow Discovery with Arazzo Integration

json

{
 "workflows": [
 {
 "workflowId": "bookFlight",
 "summary": "Book a flight and notify user",
 "inputs": {
 "destination": { "type": "string" },
 "date": { "type": "string" },
 "user_id": { "type": "string" }
 },
 "steps": [
 {

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 26

 "stepId": "checkAvailability",
 "x-action": "check",
 "x-category": "acquire",
 "path": "/availability",
 "sourceDescription": {
 "name": "flightAPI",
 "url": "https://api.flightprovider.com/openapi.yaml",
 "type": "openapi"
 },
 "parameters": [
 { "name": "destination", "value": "$inputs.destination" },
 { "name": "date", "value": "$inputs.date" }
],
 "successCriteria": { "condition": "$statusCode == 200" }
 },
 {
 "stepId": "bookFlight",
 "x-action": "submit",
 "x-category": "transact",
 "path": "/booking",
 "parameters": [
 { "name": "flight_id", "value":

"$steps.checkAvailability.output.flight_options[0].id" },
 { "name": "user_id", "value": "$inputs.user_id" }
],
 "successCriteria": { "condition": "$statusCode == 201" }
 }
],
 "scopes_required": ["booking:write"],
 "x-arazzo-version": "1.0.1"
 }
]
}

OpenAPI Metadata with Arazzo Extension:

yaml

paths:
 /workflows:
 get:

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 27

 x-action: "discover_workflows"
 x-category: "orchestrate"
 x-arazzo: true
 summary: "Discover available workflows"
 responses:
 '200':
 description: "List of workflows with Arazzo-compatible metadata"
 content:
 application/json:
 schema:
 type: object
 properties:
 workflows:
 type: array
 items:
 type: object
 properties:
 workflowId: { type: string }
 summary: { type: string }
 inputs: { type: object }
 steps: { type: array }
 scopes_required: { type: array, items: { type:

string } }
 required: [workflowId, summary, steps]

This integration allows AgenticAPI to leverage Arazzo’s deterministic workflows while
maintaining its task-centric semantics. Arazzo’s sourceDescriptions field enhances
interoperability by referencing external OpenAPI documents, aligning with AgenticAPI’s goal of
simplifying multi-API orchestration. The x-arazzo extension signals compatibility, enabling tools
to process workflows in software development lifecycle (SDLC) pipelines, supporting automated
testing and contract adherence (Section 9). By combining Arazzo’s workflow focus with
AgenticAPI’s contextual intelligence and semantic discoverability, agents can execute complex
tasks with greater reliability and scalability, reducing reliance on prompt engineering or external
orchestration.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 28

7. Implementation Blueprint
Translating the ACTION framework and AgenticAPI Specification from conceptual model to
production-ready architecture requires a structured, incremental approach. Organizations with
existing RESTful or CRUD-based APIs will face the dual challenge of introducing
action-oriented semantics without disrupting current functionality. This section outlines a
pragmatic implementation strategy that balances adoption feasibility, semantic integrity, and
backward compatibility.

Migrating from CRUD to ACTION
Enterprise APIs often expose endpoints tied to data models (e.g., entities, records)
rather than operational tasks. Transitioning to an ACTION-compliant design
involves reframing these as intent-driven actions. Developers can begin with
functional mapping: identify user- or system-driven tasks (e.g., “summarize a
document,ˮ “notify a userˮ), evaluate whether current endpoints (e.g., POST
/documents) reflect actions or objects, and redefine them as verb-based
operations (e.g., SUMMARIZE /document).

The following table illustrates common CRUD-to-ACTION mappings:

CRUD Operation Category Verb Example Semantic Shift

POST /users Transact REGISTER /user Object creation to enrollment

GET /orders Acquire SEARCH /orders Data listing to discovery

PUT /user/1 Compute VALIDATE /user Update to rule-based checking

DELETE /event Transact CANCEL /event Deletion to withdrawal

These mappings expose task intent, documented with contextual availability (e.g., VALIDATE
/user requires admin role), aligning with Contextual Alignment to prevent invalid operations.
Original CRUD endpoints can be aliased (e.g., POST /users → REGISTER /user),
supporting hybrid coexistence for traditional and agentic clients.

Structuring Payloads and Parameters
ACTION endpoints must be self-describing and context-aware, using Pydantic schemas in
FastAPI for type safety. Input schemas should include:

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 29

● Intent Modifiers: Values altering execution (e.g., mode=brief, priority=high).
● Context References: Links to entities or states (e.g., user_id, session_id).
● Execution Hints: Fields guiding interpretation (e.g., language=en, format=table).

For multi-step workflows, payloads may include execution plans (e.g., sub-actions, retry
policies). All parameters are documented with OpenAPI extensions (e.g., x-intent-impact,
x-example) to enable agent reasoning without external documentation.

Example: SUMMARIZE /document

python

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel

app = FastAPI()

class SummarizeQuery(BaseModel):
 document_id: str
 format: str = "text" # text, bullets
 max_words: int = 50
 style: str = "neutral" # formal, casual, technical
 output_format: str = "json" # json, text
 return_raw: bool = False

@app.api_route("/document", methods=["SUMMARIZE"], openapi_extra={"x-action":

"summarize", "x-category": "compute"})
async def summarize_document(query: SummarizeQuery):
 try:
 # Simulated summarization logic
 summary = "Comic books evolve with digital platforms, diverse creators,

hybrid formats, and cultural impact."
 return {"summary": summary, "title": "Document Title", "output_format":

query.output_format}
 except Exception as e:
 raise HTTPException(status_code=500, detail=f"Summarization failed:

{str(e)}")

Request:
{
 "document_id": "c1",
 "format": "text",
 "max_words": 20,

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 30

 "style": "neutral",
 "output_format": "json"
}

Response:

{
 "summary": "Comic books evolve with digital platforms, diverse creators, hybrid

formats, and cultural impact.",
 "title": "Comic Book Evolution"
}

Response (Conversational, ?output_format=text):

text

Comic books have transformed through digital platforms, empowering diverse
creators and blending print with innovative formats for cultural impact.

Input with Semantic Discoverability
Semantic discoverability enables agents to understand and invoke API capabilities without
relying on natural language prompts or reverse engineering. AgenticAPI achieves this by
exposing actions as discoverable endpoints, allowing agents to query available operations
dynamically, as outlined in the capability-oriented discovery model. For example, agents can
explore what actions an API supports, their categories, and execution constraints, aligning with
the Agent Experience (AX) demand for machine-first consumption.

Consider a discovery endpoint that lists available actions:

Example: DISCOVER /actions

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "actions": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "action_verb": { "type": "string", "enum": ["summarize", "book",

"notify"] },
 "category": { "type": "string", "enum": ["Compute", "Transact", "Notify"]

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 31

},
 "path": { "type": "string", "example": "/document" },
 "scopes_required": { "type": "array", "items": { "type": "string" },

"example": ["data:read"] },
 "preconditions": { "type": "string", "example": "document_id exists" }
 },
 "required": ["action_verb", "category", "path"]
 }
 }
 },
 "required": ["actions"]
}

Example: DISCOVER /workflows

To support deterministic workflows, the DISCOVER /workflows endpoint returns metadata
about available workflows, including their steps, inputs, and source APIs. This leverages
Arazzo’s workflow object structure to ensure agents can execute complex tasks with clear
dependencies.

json

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "workflows": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "workflowId": { "type": "string", "example": "bookFlight" },
 "summary": { "type": "string", "example": "Book a flight and notify user"

},
 "inputs": {
 "type": "object",
 "properties": {
 "destination": { "type": "string" },
 "date": { "type": "string" },
 "user_id": { "type": "string" }
 }
 },
 "steps": {
 "type": "array",

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 32

 "items": {
 "type": "object",
 "properties": {
 "stepId": { "type": "string", "example": "checkAvailability" },
 "action_verb": { "type": "string", "example": "CHECK" },
 "path": { "type": "string", "example": "/availability" },
 "sourceDescription": {
 "type": "object",
 "properties": {
 "name": { "type": "string", "example": "flightAPI" },
 "url": { "type": "string", "example":

"https://api.flightprovider.com/openapi.yaml" },
 "type": { "type": "string", "enum": ["openapi"] }
 }
 }
 }
 }
 },
 "scopes_required": { "type": "array", "items": { "type": "string" },

"example": ["booking:write"] }
 },
 "required": ["workflowId", "summary", "steps"]
 }
 }
 },
 "required": ["workflows"]
}

OpenAPI Metadata:

yaml

paths:
 /workflows:
 get:
 x-action: "discover_workflows"
 x-category: "orchestrate"
 summary: "Discover available workflows"
 responses:
 '200':
 description: "List of workflows"
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/WorkflowDiscovery'

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 33

components:
 schemas:
 WorkflowDiscovery:
 type: object
 properties:
 workflows:
 type: array
 items:
 type: object
 properties:
 workflowId: { type: string }
 summary: { type: string }
 inputs: { type: object }
 steps: { type: array }
 scopes_required: { type: array, items: { type: string } }
 required: [workflowId, summary, steps]

This response enables agents to identify executable actions and workflows along with their
semantic context, reducing dependency on external documentation. The sourceDescription
field ensures interoperability with external APIs, aligning with enterprise sandbox environments.

To ensure payloads are unambiguous, AgenticAPI minimizes optional fields and annotates them
with x-intent-impact in OpenAPI schemas, clarifying how parameters alter outcomes (e.g.,
destination in CHECK /availability filters flight options). This reinforces Semantic
Discoverability, enabling agents to process inputs reliably without assumptions.

To ensure payloads are unambiguous, AgenticAPI carefully designs input parameters. To
prevent agent misinterpretation, AgenticAPI minimizes optional fields and annotates them with
x-intent-impact in OpenAPI schemas, clarifying how they alter outcomes (e.g.,
format=bullet changes response structure). This approach reinforces Semantic
Discoverability, enabling agents to process inputs reliably without assumptions.

Contextual Intelligence: Dynamically Adapting to Intent

AgenticAPI’s contextual intelligence empowers AI agents to interpret and adapt the intent
behind versatile verbs like CHECK, which can represent diverse tasks—checking weather,
availability, flight status, grocery lists, schedules, KPIs, or due dates. Traditional APIs struggle
with such ambiguity, forcing agents to rely on external logic or documentation to discern
meaning. AgenticAPI addresses this by embedding intent into the API layer, using semantic
metadata to dynamically adjust CHECK based on context, ensuring precise, relevant responses.

Through the DISCOVER /actions endpoint, agents query available actions and receive
metadata clarifying what CHECK means in each context. For example, CHECK /weather

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 34

retrieves forecasts, while CHECK /availability confirms meeting slots. This leverages the
ACTION taxonomy (Acquire, Compute, Transact, etc.), aligning with Semantic Discoverability to
make intent machine-readable. AI-driven contextual analysis minimizes misinterpretation,
enabling agents to execute tasks without hardcoded assumptions, enhancing the Agent
Experience (AX).

This approach supports natural language semantics, allowing users and agents to maximize
process efficiency across domains like finance, healthcare, or logistics. By reducing reliance on
external orchestration, AgenticAPI streamlines automation, lowers error rates, and scales
effortlessly, as demonstrated in proof-of-concepts for tasks like scheduling.

Example: DISCOVER /actions

{
 "actions": [
 {
 "action_verb": "CHECK",
 "category": "Acquire",
 "path": "/weather",
 "description": "Retrieve weather for a location",
 "inputs": ["location"],
 "scopes_required": ["weather:read"]
 },
 {
 "action_verb": "CHECK",
 "category": "Acquire",
 "path": "/availability",
 "description": "Check meeting slot availability",
 "inputs": ["date", "participants"],
 "scopes_required": ["calendar:read"]
 },
 {
 "action_verb": "CHECK",
 "category": "Transact",
 "path": "/flight_status",
 "description": "Verify flight status",
 "inputs": ["flight_number"],
 "scopes_required": ["flight:read"]
 }
]
}

OpenAPI Metadata

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 35

yaml

paths:
 /{context}:
 check:
 x-action: "check"
 x-category: "acquire"
 summary: "Check context-specific information"
 parameters:
 - name: context
 in: path
 required: true
 schema:
 type: string
 enum: [weather, availability, flight_status]
 x-intent-impact: "Defines the domain of the check action"

This metadata ensures agents dynamically adapt CHECK to the intended task, making
AgenticAPI a foundation for intent-driven, scalable automation.

Standardized Output with Execution Clarity and Adaptive
Representation

Responses must reflect both outcome and agent usability. For example:

{
 "status": "completed",
 "summary": "Comic books evolve with digital platforms, diverse creators, hybrid

formats, and cultural impact.",
 "title": "Comic Book Evolution",
 "output_format": "json",
 "confidence": 0.92
}

This model supports:

● Execution Clarity: status and next_action clarify outcomes and follow-ups.
● Intent Weighting: confidence expresses internal certainty
● Adaptive Output: output_type enables formats like text, markdown, or JSON.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 36

Integrating Compatibility and Extensibility

AgenticAPI extends REST conventions without breaking compatibility. An aliasing strategy
ensures coexistence:

yaml

paths:
 /document:
 post:
 summary: "Summarize a document (POST)"
 operationId: summarizeDocumentPost
 x-alias-for: "SUMMARIZE /document"
 /document:
 summarize:
 x-action: "summarize"
 x-category: "compute"
 summary: "Summarize a document"
 operationId: summarizeDocument

Swagger UI displays both paths, while agents use x-action metadata, supporting
Compatibility and Extensibility (Section 6) and PoC’s integration complexity goal.

Embedding Intent Weighting and Sensitivity

Agents must often select among multiple similar options. Adding intent qualifiers helps resolve
ambiguity:

yaml

x-intent-weighting:
 priority: "high"
 cost_estimate: 0.004 # in USD
 risk_profile: "low"

This enables agents to compare actions (e.g., SUMMARIZE vs. TRANSLATE), optimizing based
on cost or urgency (Wooldridge & Jennings, 1995), per the Intent Weighting principle.

Orchestrating Complex Workflows
Real-world agent tasks often span multiple operations, requiring APIs to support chaining,
recursion, and adaptive workflows. To enable agents to orchestrate sequences based on

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 37

success, failure, or context, AgenticAPI provides standardized patterns and implementation
mechanisms, aligned with the Orchestrate category (Appendix A). APIs should:

● Provide unique identifiers for each action instance to ensure traceability.
● Return linkable references to follow-up operations (e.g., a BOOK action linking to

MODIFY).
● Include status metadata to clarify whether additional steps are required.
● Use predictable naming conventions (e.g., SCHEDULE, RESCHEDULE, CANCEL) for

intuitive action relationships.
● Expose retry policies and fallback actions (e.g., RETRY /action, ESCALATE

/workflow) to handle failures gracefully.

These patterns enable agents to construct adaptive workflows, retry failed steps, or continue
partially completed processes without external orchestration systems.

Example: CHAIN /request

python

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any

app = FastAPI()

class ChainStep(BaseModel):
 verb: str
 path: str
 params: Dict[str, Any]

class ChainRequest(BaseModel):
 chain: List[ChainStep]

@app.post("/chain", openapi_extra={"x-action": "chain", "x-category":

"orchestrate"})
async def chain_verbs(chain_request: ChainRequest):
 results = []
 for step in chain_request.chain:
 verb = step.verb.upper()
 try:
 # Simulated verb processing
 result = {"status": "completed", "output": f"{verb} executed"}
 results.append({"step": step.model_dump(), "result": result})

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 38

 except Exception as e:
 results.append({"step": step.model_dump(), "error": str(e)})
 return {"results": results}

Request:
{
 "chain": [
 {
 "verb": "SEARCH",
 "path": "/orders",
 "params": {"query": "pending", "output_format": "json"}
 },
 {
 "verb": "NOTIFY",
 "path": "/notify",
 "params": {
 "recipient": "user@example.com",
 "message": "Order processed",
 "channel": "email",
 "output_format": "json"
 }
 }
]
}

Response:
{
 "results": [
 {
 "step": {
 "verb": "SEARCH",
 "path": "/orders",
 "params": {"query": "pending", "output_format": "json"}
 },
 "result": {
 "status": "completed",
 "output": "SEARCH executed"
 }
 },
 {
 "step": {
 "verb": "NOTIFY",
 "path": "/notify",
 "params": {

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 39

 "recipient": "user@example.com",
 "message": "Order processed",
 "channel": "email",
 "output_format": "json"
 }
 },
 "result": {
 "status": "completed",
 "output": "NOTIFY executed"
 }
 }
]
}

This schema supports looping, branching, retries, and fallbacks, documented with x-workflow
and x-dependency. Real-time adaptation adjusts workflows dynamically, enhancing flexibility
(Section 5).

Example: Workflow Specification for Flight Booking

To support complex tasks across multiple APIs, AgenticAPI introduces a Workflow Specification
Object for payloads, defining deterministic sequences of actions. This extends the CHAIN
/request endpoint to incorporate Arazzo’s structure, ensuring agents execute workflows like
flight booking with clear dependencies.

python

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any

app = FastAPI()

class WorkflowStep(BaseModel):
 stepId: str
 action_verb: str
 path: str
 parameters: List[Dict[str, Any]]
 successCriteria: Dict[str, Any]

class WorkflowSpec(BaseModel):
 workflowId: str
 inputs: Dict[str, Any]

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 40

 steps: List[WorkflowStep]
 sourceDescriptions: List[Dict[str, str]]

@app.post("/workflow/{workflowId}", openapi_extra={"x-action": "execute_workflow",

"x-category": "orchestrate"})
async def execute_workflow(workflowId: str, workflow: WorkflowSpec):
 try:
 results = []
 for step in workflow.steps:
 # Simulated step processing
 result = {"status": "completed", "output": f"{step.action_verb}

executed"}
 results.append({"step": step.dict(), "result": result})
 return {
 "workflowId": workflowId,
 "status": "completed",
 "results": results
 }
 except Exception as e:
 raise HTTPException(status_code=500, detail=f"Workflow execution failed:

{str(e)}")

Request:

json

{
 "workflowId": "bookFlight",
 "inputs": {
 "destination": "San Francisco",
 "date": "2025-06-01",
 "user_id": "user123"
 },
 "sourceDescriptions": [
 {
 "name": "flightAPI",
 "url": "https://api.flightprovider.com/openapi.yaml",
 "type": "openapi"
 }
],
 "steps": [
 {
 "stepId": "checkAvailability",
 "action_verb": "CHECK",
 "path": "/availability",

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 41

 "parameters": [
 { "name": "destination", "value": "$inputs.destination" },
 { "name": "date", "value": "$inputs.date" }
],
 "successCriteria": { "condition": "$statusCode == 200" }
 },
 {
 "stepId": "bookFlight",
 "action_verb": "BOOK",
 "path": "/booking",
 "parameters": [
 { "name": "flight_id", "value":

"$steps.checkAvailability.outputs.flight_options[0].id" },
 { "name": "user_id", "value": "$inputs.user_id" }
],
 "successCriteria": { "condition": "$statusCode == 201" }
 }
]
}

Response:

json

{
 "workflowId": "bookFlight",
 "status": "completed",
 "results": [
 {
 "step": {
 "stepId": "checkAvailability",
 "action_verb": "CHECK",
 "path": "/availability",
 "parameters": [
 { "name": "destination", "value": "San Francisco" },
 { "name": "date", "value": "2025-06-01" }
],
 "successCriteria": { "condition": "$statusCode == 200" }
 },
 "result": { "status": "completed", "output": "CHECK executed" }
 },
 {
 "step": {
 "stepId": "bookFlight",
 "action_verb": "BOOK",

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 42

 "path": "/booking",
 "parameters": [
 { "name": "flight_id", "value":

"$steps.checkAvailability.outputs.flight_options[0].id" },
 { "name": "user_id", "value": "user123" }
],
 "successCriteria": { "condition": "$statusCode == 201" }
 },
 "result": { "status": "completed", "output": "BOOK executed" }
 }
]
}

OpenAPI Metadata:

yaml

paths:
 /workflow/{workflowId}:
 post:
 x-action: "execute_workflow"
 x-category: "orchestrate"
 summary: "Execute a defined workflow"
 parameters:
 - name: workflowId
 in: path
 required: true
 schema:
 type: string
 x-intent-impact: "Identifies the workflow to execute"
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/WorkflowSpec'
components:
 schemas:
 WorkflowSpec:
 type: object
 properties:
 workflowId: { type: string }
 inputs: { type: object }
 steps: { type: array }
 sourceDescriptions: { type: array }
 required: [workflowId, steps]

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 43

This payload structure ensures agents can execute multi-API workflows with clear intent,
leveraging Arazzo’s deterministic approach while maintaining AgenticAPI’s task-centric
semantics.

Test Mode
AgenticAPI enhances safety and reliability by supporting a test mode, allowing agents to
simulate actions without committing changes. Aligned with the Compute category’s focus on
evaluation (e.g., VALIDATE, EVALUATE), endpoints like TEST /action return anticipated
outcomes, side effects, and validation checks, enabling agents to assess task feasibility before
execution. This capability, rooted in the Execution Clarity principle, is critical for high-stakes
domains like finance (e.g., testing a payment authorization) and healthcare (e.g., simulating
patient triage).
Example: TEST /action

python

from fastapi import FastAPI
from pydantic import BaseModel
from typing import Dict, Any

app = FastAPI()

class TestRequest(BaseModel):
 verb: str
 path: str
 payload: Dict[str, Any]

@app.post("/action", openapi_extra={"x-action": "test", "x-category":

"compute"})
async def test_action(test: TestRequest):
 return {
 "verb": test.verb,
 "path": test.path,
 "status": "valid",
 "outcome": {"example": "Simulated result"},
 "side_effects": ["none"],
 "validation_checks": {"preconditions_met": True}
 }

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 44

Test mode reduces errors by enabling agents to verify preconditions and anticipate impacts,
fostering trust in agent-driven automation. For example, a financial agent can test a TRANSFER
/funds action to confirm compliance, while a healthcare agent can simulate TRIAGE
/patient to validate protocol adherence. Integrated with workflows (Section 7), test mode
supports pre-execution checks for orchestrated tasks, enhancing AX by ensuring precision and
scalability in dynamic environments.

Versioning and Compatibility Considerations

To maintain system stability, ACTION-based additions should be treated as non-breaking
enhancements. Use OpenAPI’s versioning mechanisms (e.g., info.version,
x-api-version) to differentiate action-enriched specs from legacy ones.

When possible:

● Maintain consistent identifiers across old and new paths.
● Signal ACTION readiness via capability flags (e.g., x-action-supported: true).
● Allow clients to opt in to ACTION routing via headers or discovery metadata.

This ensures a smooth transition path and minimizes disruption to existing workflows.

Operationalizing Intent

This revised implementation blueprint demonstrates how each feature of the AgenticAPI
Specification can be operationalized in practice. By aligning endpoint design with ACTION
categories, exposing semantic metadata, supporting contextual execution logic, and designing
for nested orchestration flows, developers can build APIs that agents can not only call but
understand, evaluate, and adapt to.

Crucially, the framework is designed for incremental adoption. Organizations can alias existing
endpoints, enrich OpenAPI specs with metadata, and phase in advanced features such as
intent weighting and adaptive output formats without disrupting existing clients.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 45

8. Comparative Analysis
As organizations evaluate how to modernize their interfaces for AI agent consumption, it is
essential to assess the strengths and limitations of prevailing API paradigms. Each model,
CRUD, GraphQL, REST, and protocol-based frameworks like MCP offers distinct benefits and
trade-offs. The ACTION framework, as defined in the AgenticAPI Specification, introduces an
intent-first, task-oriented design model that aligns with the operational requirements of intelligent
systems.

This section provides a structured comparison of ACTION relative to alternative approaches,
across dimensions of semantic clarity, orchestration support, complexity, maintainability, and
agent usability.

ACTION vs. CRUD

The CRUD model, designed for low-level data manipulation (Create, Read, Update, Delete),
prioritizes structure over purpose (Fielding, 2000). While effective for database abstraction and
developer control, CRUD lacks operational intent, increasing cognitive burden for agents
inferring endpoint functions. For example, an endpoint like POST /reports could imply
GENERATE, SUBMIT, or APPROVE, causing ambiguity. In contrast, ACTION employs semantic
verbs (e.g., SUMMARIZE, BOOK, RECOMMEND) to encode goals, reducing processing complexity
for automated systems. Under ACTION, each task is distinct and discoverable.

Moreover, CRUD offers no built-in orchestration semantics, forcing agents to construct
multi-step tasks externally. ACTION supports execution chaining, retry semantics, and
contextual awareness, enabling workflow assembly for advanced agents. These features make
ACTION more suitable for agent-driven systems.

ACTION vs. GraphQL

GraphQL shifts from fixed endpoints to client-defined queries, emphasizing data flexibility over
execution semantics (GraphQL, 2023). It reduces over-fetching and enhances performance for
front-end applications but does not model tasks. GraphQL mutations are often generic, lacking
clear intent for agent-based decision-making (Hartig & Pérez, 2017). For instance, a mutation
named processOrder may obscure multiple side effects, complicating agent evaluation.

Conversely, ACTION defines capabilities as verbs within functional domains (e.g., Acquire,
Compute, Transact), allowing agents to reason about actions, constraints, and execution paths
(Verborgh et al., 2016). While GraphQL’s type system is expressive, it prioritizes data schema
over intent. ACTION extends OpenAPI schemas with contextual metadata, enabling agents to
assess task suitability, outcomes, and side effects before invocation.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 46

ACTION vs. Traditional REST

Traditional RESTful APIs organize routes around resources, using URL paths and HTTP verbs
to imply capability. While REST brought order to early web APIs, it offers limited semantic
signaling to automated clients. Endpoints such as PUT /status or POST /payment require
documentation parsing or hardcoded interpretation to determine what effect they perform.

ACTION augments this model by elevating verbs to first-class entities. For example, NOTIFY
/user, AUTHORIZE /account, and SCHEDULE /task make action and intent explicit.
Additionally, ACTION introduces metadata such as preconditions, outcomes, and
confidence, allowing agents to plan and adapt, functionality that REST endpoints do not
natively support.

Moreover, REST does not support multi-step task orchestration, error remediation pathways, or
fallback alternatives at the API layer. These must be constructed in external systems, increasing
maintenance complexity and agent-side burden.

ACTION vs. MCP / A2A Protocols

Proposals like Model Context Protocol (MCP) and Agent-to-Agent (A2A) communication aim to
create a protocol layer for agent coordination, enabling discovery, negotiation, and task
delegation between models. While the concept has theoretical merit, these approaches
introduce unnecessary complexity without addressing the core issue: how agents interact with
actions and data effectively.

MCP does not replace APIs. It adds an additional intermediation layer that increases latency,
creates new points of failure, complicates versioning, and makes security and observability
harder to manage. It also assumes that agent-to-agent collaboration is essential, when in most
practical workflows, an agent can complete the task through a direct call to a well-designed API.

AgenticAPI offers a more effective solution. Rather than adding protocol layers, it focuses on
improving API design by using clear operational verbs and context-aware contracts. This allows
agents to invoke APIs directly, receive structured outputs, and complete complex tasks without
relying on external coordination mechanisms.

The goal is not to eliminate APIs but to evolve them into intelligent interfaces that agents can
understand and act on independently. AgenticAPI simplifies the system while preserving the
benefits of secure, scalable, and interpretable integration.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 47

Core Comparison: MCP vs AgenticAPI

Category MCP AgenticAPI

Interface Local plugin server or YAML-defined
manifest API-native contract (verbs with structured logic)

Execution Model Shell/process-based, often insecure, DIY HTTP-based, secure, governed, and observable

Versioning Largely ad-hoc Potential for formal versioning, contracts,
governance

Use Case Fit Chat-UI plugins, hobbyist workflows Structured, scalable agent-to-service execution

Security Poor by default, requires user hardening Built for enterprise integration and observability

Scalability Local and brittle Centralized and standard-compliant

Developer UX YAML hell and untyped JSON IDE-discoverable, verb-based API design

Data vs. Action Mostly passthrough, requires extra logic Can embed intelligence or return clean data for
agent use

Strategic Differentiation from MCP
Positioning Claim Supporting Argument

AgenticAPI is not a plugin layer It retains API integrity, versioning, and observability.

It is not brittle or local No shelling out, no unvetted code execution.

It is semantically richer than CRUD Action verbs encode task intent (SUMMARIZE, TRANSLATE,
DECIDE).

It scales across agents, not just chat UIs Designed for interoperable agents and services, not just user
assistants.

It embeds security from day one MCPs assume trust; AgenticAPI enforces it.

Comparative Summary Table

Model Intent
Clarity

Agent
Usability

Orchestration
Support

Protocol
Complexity

Adoption
Cost

CRUD Low Low None Low Minimal

GraphQL Medium Low Limited Medium High

REST Medium Medium External only Low Minimal

MCP / A2A High Medium High Very High Very High

ACTION High High Native Low Moderate

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 48

9. Organizational Impact
The introduction of the ACTION framework and the AgenticAPI Specification represents more
than a shift in interface mechanics. It marks a transformation in how organizations conceive,
build, and manage their integration layer. As APIs evolve from data access tools to
action-oriented capabilities, development teams, system architects, and business stakeholders
must realign their processes, standards, and expectations to fully realize the benefits of
intent-driven design.

This section examines the practical implications of adopting ACTION for API-producing teams
and the broader strategic benefits for organizations pursuing intelligent automation at scale.

Impact on API Teams

Updated Design Workflows

ACTION requires API teams to transition from resource modeling to task modeling. Rather than
begin with database tables or object schemas, design processes should originate from goal
decomposition: What tasks do users or agents need to perform? What operations need to be
exposed to satisfy those tasks in a predictable, executable manner?

This shift encourages cross-functional collaboration between product managers, domain
experts, and API designers (Nylén & Holmström, 2015). Task design becomes a shared
language that spans functional and technical disciplines. As a result, teams must adopt:

● Verb-driven design templates
● Task-specific contract definition
● Execution context mapping (preconditions, expected outcomes, side effects)

Teams may also need to define domain-specific verb libraries, extendable from the ACTION root
taxonomy, to support vertical alignment (e.g., reconcile, triage, route).

New Developer Onboarding Patterns

Developer onboarding will evolve to include action vocabulary fluency, not just endpoint
familiarity. With ACTION-compliant APIs, documentation focuses on:

● What each service does (actions)
● Under what conditions it operates
● How agents and developers invoke, chain, or remediate tasks

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 49

New developers (human or machine) can be guided through capability-based discovery
rather than structural path traversal. This reduces cognitive load and accelerates integration
readiness.

Documentation, Testing, and Observability

The AgenticAPI model demands higher semantic rigor in API documentation. Each operation
must be annotated with:

● Intent descriptors (e.g., x-action, x-category)
● Precondition logic
● Execution metadata (e.g., latency, confidence thresholds, required scopes)

Documentation tooling such as Swagger or Stoplight can be extended to render action verbs as
navigable units of capability. Additionally, observability systems must be adapted to monitor
action-level outcomes, such as success rates, fallback usage, or escalation frequency, metrics
often abstracted away in CRUD-centric systems. Platforms like PolyAPI, with its real-time
runtime visibility and comprehensive resource cataloging, exemplify how such observability can
be achieved (PolyAPI, n.d.).

Testing frameworks will also shift toward task correctness and semantic validation, ensuring not
only syntactic integrity but also appropriate execution in real-world contexts. For example,
contract tests may assert that a RECOMMEND /products action excludes banned SKUs or
respects pricing filters under specific conditions.

Strategic Business Value

Shorter Development Cycles

By exposing semantically rich, self-describing APIs, development teams reduce the need for
extensive client-side interpretation or custom logic scaffolding (Wang & McLarty, 2021). Agents
and developers can onboard faster, construct task flows more easily, and validate integration
behavior in fewer iterations. This leads to:

● Reduced time-to-market for new services
● Faster integration cycles for partners and clients
● Lowered need for platform support or technical debt remediation

Lower Integration Friction

ACTION reduces the impedance mismatch between what APIs offer and what agents or
applications intend to do. This dramatically lowers integration friction, particularly in multi-vendor
ecosystems, where semantically aligned verbs reduce the need for brittle API mediation layers
or prompt engineering.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 50

Organizations benefit from:

● Easier tool substitution and component reusability
● Better contract alignment with business processes
● Decreased reliance on tribal knowledge or internal specialists

More Intelligent Automation at Lower Cost

Perhaps most critically, ACTION enables intelligent automation to be deployed without requiring
agents to agent or protocol-based negotiation. Agents become more effective with less training,
fewer assumptions, and higher execution reliability, yielding:

● Lower automation engineering costs
● Fewer failure modes in complex workflows
● Higher confidence in auditability and governance of automated actions

By clarifying what systems can do and under what conditions, ACTION empowers both human
operators and machine agents to act decisively without requiring deep systems knowledge or
brittle integration patterns.

Redesigning the Interface Layer for Scalable Intelligence

Adopting the ACTION framework and AgenticAPI Specification reshapes not only how APIs are
consumed, but how they are designed, documented, and deployed. This shift moves APIs from
data exposure to capability expression, enabling measurable gains in integration velocity,
developer efficiency, and agent-driven task execution.

As AI agents become embedded across enterprise workflows, they introduce new demands on
infrastructure, particularly in handling unpredictable, high-frequency, task-based requests.
AgenticAPI addresses this by supporting intelligent scalability features such as action-aware
rate limiting, dynamic throttling, and usage-based entitlements. Metadata fields like
x-cost-estimate give agents visibility into resource usage, allowing them to make
performance-conscious decisions and avoid unnecessary overload.

By aligning API architecture with agent behavior, AgenticAPI equips organizations to scale
intelligent automation without compromising system reliability. In this emerging landscape, APIs
that expose clear, intent-driven operations will become foundational infrastructure for adaptive,
resilient digital ecosystems.

API Governance with ACTION

Effective API governance ensures secure, scalable, and compliant agent-driven ecosystems,
enhancing AX by providing predictable, reliable interactions. Unlike traditional models reliant on
static schemas and coarse-grained controls, AgenticAPI embeds dynamic, granular governance

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 51

into the API surface, aligning with Semantic Discoverability and Execution Clarity principles
(Executive Summary) to support enterprise-grade automation.

ACTION verbs (e.g., AUTHORIZE, ESCALATE, Appendix A) enforce semantic clarity, eliminating
API quirks that confuse agents. For example, NOTIFY /team ensures consistent behavior,
discoverable via DISCOVER /actions (Section 7), simplifying policy enforcement for access
control and rate limiting across multi-agent systems.

Fine-grained authentication, built on OAuth 2.0 (Section 5), uses task-specific scopes (e.g.,
scope: book_flight) in auditable tokens, supporting forensic analysis and compliance with
regulations like GDPR or HIPAA. A financial agent’s TRANSFER /funds, for instance, is logged
to verify authorized access, ensuring least-privilege execution.

Observability metrics, such as x-success-rate and x-escalation-thresholds, enable
real-time monitoring. An audit log schema illustrates this:

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "type": "object",
 "properties": {
 "action_id": { "type": "string", "example": "act_789" },
 "verb": { "type": "string", "example": "BOOK" },
 "timestamp": { "type": "string", "format": "date-time", "example":

"2025-06-01T14:00:00Z" },
 "status": { "type": "string", "enum": ["success", "failed"], "example":

"success" },
 "escalation": { "type": "boolean", "example": false }
 },
 "required": ["action_id", "verb", "timestamp", "status"]
}

Annotated with x-audit-log, this feeds dashboards or machine-learning monitors, adapting
workflows proactively (e.g., adjusting RETRY /action thresholds). Metrics also track error
patterns, enhancing reliability and supporting proactive resolution of agent-driven issues.

Lifecycle governance treats actions as versioned, contract-bound capabilities, ensuring
traceability during deprecations or updates while maintaining compatibility and extensibility.
Compliance is enforced via role-based access and audit trails, scaling for distributed systems
and integrating with test mode for safe validation.

AgenticAPI’s governance layer enforces policies, monitors performance, and ensures
compliance without stifling innovation, providing a secure foundation for intelligent automation.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 52

10. The Future of AI-System Integration
As intelligent agents continue to expand their role across enterprise systems, the interface layer
between these agents and underlying services will become a defining factor in overall system
effectiveness, adaptability, and security. The AgenticAPI Specification, grounded in the ACTION
framework, offers a foundation for building APIs that support this new generation of integrations
that are task-oriented, semantically expressive, and natively interpretable by systems.

This section explores the long-term implications and emerging opportunities surrounding the
AgenticAPI model, including ecosystem development, domain specialization, standards
evolution, and developer enablement.

AgenticAPI as Foundational Infrastructure

Current integration strategies often emphasize endpoint exposure over functional accessibility.
As a result, most APIs require extensive client-side interpretation or intermediary protocols to
simulate task execution. In contrast, the AgenticAPI model positions APIs not as passive data
providers but as declarative capability surfaces.

Over time, this paradigm is likely to form the core infrastructure for AI-native integration,
enabling agents to:

● Discover available operations across heterogeneous systems

● Evaluate and select executable tasks based on intent and constraints

● Compose workflows without relying on brittle service contracts or manual orchestration

Organizations that adopt ACTION and AgenticAPI early will establish a foundation for intelligent
automation that is resilient, modular, and extensible, positioning themselves to scale agentic
interfaces across products, departments, and third-party ecosystems.

ACTION Registries and API Marketplaces

The emergence of ACTION-based registries will allow developers and agents to query
available capabilities across domains, vendors, or platforms. Instead of searching for GET
/data, agents will query: “Which APIs support RECOMMEND /product?” or “What services
can SUMMARIZE /document with a confidence > 0.9?”

These registries could:

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 53

● Organize services by verb, domain, or task type

● Include runtime metadata, such as usage statistics or performance benchmarks

● Support agent discovery mechanisms, where agents automatically adapt behavior
based on registry lookups

● Facilitate automated substitutions or fallback strategies during service outages

Marketplaces built around action semantics would allow developers to browse based on
operational intent, enhancing discoverability and promoting API reuse.

Domain-Specific Verb Libraries

While the ACTION root taxonomy defines a general-purpose semantic structure, many
industries require specialized verbs that reflect their unique operational contexts. For example:

● Healthcare: triage, diagnose, prescribe, escalate, refer
● Finance: reconcile, settle, audit, forecast, approve
● Logistics: dispatch, track, reroute, dock, confirm
● Media & Entertainment: produce, edit, render, promote, license
● Retail: recommend, fulfill, price, restock, return
● Hospitality: book, checkin, upgrade, personalize, escalate

By formalizing domain-specific verb libraries, organizations and industry groups can create
shared ontologies that support semantic interoperability between agents and services within
their field. These libraries can build upon ACTION primitives (e.g., triage as a specialized
evaluate + orchestrate pattern) and offer templates for validation, fallback, and
documentation practices.

Standards and Specification Integration

The AgenticAPI model is designed to extend, not replace, existing API standards. As OpenAPI
continues to evolve, there is a strong opportunity to:

● Introduce official support for action-oriented metadata fields (e.g., x-action,
x-preconditions, x-intent)

● Standardize representations of execution semantics, including confidence scores, side
effects, and chained task references

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 54

● Enable declarative orchestration modeling using structured response metadata

● Include support for capability discovery endpoints where clients can query available
verbs and their constraints at runtime

Community-driven efforts and open working groups could define AgenticAPI extensions as an
experimental schema profile within OpenAPI’s next specification version, accelerating adoption
through alignment with established tooling and workflows.

Developer Tooling and Enablement

To support the broader adoption of AgenticAPI, a new class of developer tools must emerge,
optimized for semantic interface development. For example, an action linter might flag a
misaligned SUMMARIZE verb in the Transact category, ensuring taxonomy consistency.

● Action linters to validate verb usage and category alignment

● Schema scaffolding generators for each ACTION category

● Intent simulator that allows developers to test how agents interpret APIs

● Mock environments for training and validating agents on simulated task executions

● Verb registries and validators to enforce consistency across distributed services

These tools will reduce implementation friction, improve developer confidence, and ensure
higher interoperability between agents and services in increasingly dynamic environments.

The Foundation for Intent-Driven Integration

The future of AI-system integration will not be defined by data alone, but by intent clarity, task
capability, and execution predictability. The AgenticAPI Specification, grounded in the ACTION
framework, provides the scaffolding for this evolution by transforming APIs into intelligent
interfaces that speak the language of operations, not just endpoints.

As registries, standards bodies, domain taxonomies, and developer tools evolve around this
model, AgenticAPI will serve not merely as an implementation pattern but as a foundational
layer for automated systems integration. It is a model that supports clarity at scale, modularity
by design, and intelligence as a native property of the interface.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 55

11. APIs That Enable Action, Not Abstraction
As AI agents become integral components of digital ecosystems, the assumptions that have
shaped interface design for decades must be revisited. The primary purpose of APIs in agentic
environments is to expose structured capabilities. Agents do not require inter-agent negotiation
layers or protocol intermediaries; they require clear, actionable interfaces that communicate
what systems can do and under what conditions.

Protocol-based models such as MCP and agent-to-agent (A2A) communication frameworks
emerge largely in response to the semantic deficiencies of traditional APIs. In the absence of
clear task intent, layered abstractions attempt to mediate or translate between interfaces. Yet
these layers introduce avoidable complexity, reduce transparency, and shift the integration
problem away from the interface where it rightly belongs.

The AgenticAPI Specification, grounded in the ACTION framework, proposes a more direct
solution: elevate APIs from data access patterns to task-expressive interfaces. This model
prioritizes intent clarity, contextual execution, and semantic discoverability. By categorizing API
operations as verbs and enriching them with metadata for preconditions, outcomes, and
confidence, AgenticAPI transforms the interface into a map of capabilities.

This approach does not discard existing standards. Instead, it extends RESTful APIs and
OpenAPI documentation to be compatible with intelligent consumers. It supports gradual
migration, domain-specific extensibility, and full compatibility with existing developer workflows.

The path forward for system integration is not more protocol. There is more precision in the
interface layer where APIs tell agents not just what resources exist, but what actions can be
executed. As AI continues to reshape how systems operate, the role of the API must evolve
accordingly: from describing objects to enabling outcomes.

ACTION-based APIs are not theoretical abstractions. They are practical, implementable, and
immediately impactful. By aligning interface semantics with operational intent, AgenticAPI
provides a scalable, maintainable, and future-compatible foundation for intelligent system
integration.

In the era of agentic automation, the most valuable APIs will be those that enable execution.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 56

Appendix A: Full ACTION Verb Reference

Acquire

To retrieve, locate, or extract data for observation, filtering, or analysis. Acquire actions enable
agents to access system state or external context by scanning, searching, monitoring, or
discovering relevant information across structured and unstructured sources.

Compute

To transform inputs into outputs through processing, analysis, or transformation. Compute
actions include summarizing, validating, predicting, or classifying data to support agent
decision-making, reduce complexity, or generate new knowledge from existing inputs.

Transact

To execute operations that result in a system change or commitment. Transact actions include
booking, submitting, authorizing, or purchasing, typically persisting a new record, triggering
workflow, or completing a defined action with external or internal impact.

Integrate

To unify data, services, or structures across systems. Integrate actions map, sync, or connect
components, aligning semantics and state across environments to support consistent,
interoperable behavior and eliminate fragmentation in multi-system architectures.

Orchestrate

To coordinate workflows, retries, routing, or transformations across tasks, systems, and time.
Orchestration enables adaptive execution, conditional sequencing, and inter-system
communication allowing agents to manage process flow and bridge heterogeneous systems or
failure states.

Notify

To send alerts, updates, or structured outputs to users, agents, or systems. Notify actions
communicate results, publish information, trigger downstream actions, or log events to ensure
awareness, traceability, and response readiness across digital ecosystems.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 57

extract

● Category: Acquire
● Definition: Pull specific content or fields from an unstructured or complex source.
● Use Case: Extract named entities from a legal document.
● Example: EXTRACT /document

filter

● Category: Compute
● Definition: Exclude or include data based on specified rules.
● Use Case: Filter transactions above $5000 for review.
● Example: FILTER /transactions

generate

● Category: Compute
● Definition: Produce textual or structured documentation from a data source, codebase,

or execution log.
● Use Case Variant: Generate technical documentation from OpenAPI spec.
● Example: GENERATE /documentation?source=api-spec

import

● Category: Integrate
● Definition: Bring external data into a controlled environment.
● Use Case: Import user contact data from a CSV file.
● Example: IMPORT /contacts

link

● Category: Integrate
● Definition: Associate or relate two entities or systems.
● Use Case: Link a user account to a third-party authentication provider.
● Example: LINK /auth-provider

log

● Category: Notify
● Definition: Persist information for future reference or auditability.
● Use Case: Log user authentication attempts.
● Example: LOG /auth-events

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 58

map

● Category: Integrate
● Definition: Define relationships between fields, types, or structures.
● Use Case: Map internal job titles to standardized role definitions.
● Example: MAP /roles

merge

● Category: Integrate
● Definition: Combine data or records into a unified entity.
● Use Case: Merge duplicate customer profiles.
● Example: MERGE /profile

monitor

● Category: Acquire
● Definition: Observe a system or data stream over time for changes or thresholds.
● Use Case: Monitor product prices for a drop below $100.
● Example: MONITOR /products

normalize

● Category: Orchestrate
● Definition: Standardize data from multiple sources to a common format or structure for

unified processing.
● Use Case: Normalize customer data from various regional CRMs.
● Example: NORMALIZE /customer-data

notify

● Category: Notify
● Definition: Deliver a status or event message to a specified recipient.
● Use Case: Notify user that their password has been changed.
● Example: NOTIFY /user

pause

● Category: Orchestrate
● Definition: Temporarily halt task execution.
● Use Case: Pause an active ad campaign.
● Example: PAUSE /campaign

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 59

predict

● Category: Compute
● Definition: Forecast a value or outcome based on a model.
● Use Case: Predict customer churn likelihood.
● Example: PREDICT /churn

publish

● Category: Notify
● Definition: Make content or results accessible to a broader audience.
● Use Case: Publish a finalized press release to the newsroom.
● Example: PUBLISH /news

purchase

● Category: Transact
● Definition: Execute a financial transaction for goods or services.
● Use Case: Purchase a subscription plan.
● Example: PURCHASE /subscription

rank

● Category: Compute
● Definition: Order a list of items by score, relevance, or preference.
● Use Case: Rank products by predicted likelihood to purchase.
● Example: RANK /products

register

● Category: Transact
● Definition: Enroll a user or entity into a system, service, or process.
● Use Case: Register a participant for an upcoming webinar.
● Example: REGISTER /event

reply

● Category: Notify
● Definition: Provide a direct response to an incoming message or request.
● Use Case: Reply to a support inquiry with resolution details.
● Example: REPLY /inquiry

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 60

report

● Category: Notify
● Definition: Generate and send structured summaries or metrics.
● Use Case: Report weekly analytics to the business dashboard.
● Example: REPORT /analytics

resume

● Category: Orchestrate
● Definition: Restart a previously paused or deferred task.
● Use Case: Resume system updates after scheduled downtime.
● Example: RESUME /updates

retrieve

● Category: Acquire
● Definition: Access a specific, known data asset.
● Use Case: Retrieve the full metadata of a video file by ID.
● Example: RETRIEVE /video/123

retry

● Category: Orchestrate
● Definition: Reattempt a failed or incomplete task execution.
● Use Case: Retry failed payment for a pending order.
● Example: RETRY /payment

route

● Category: Orchestrate
● Definition: Dynamically direct requests or events to the appropriate downstream service

or workflow based on predefined logic.
● Use Case: Route support tickets to the correct regional helpdesk.
● Example: ROUTE /ticket

scan

● Category: Acquire
● Definition: Sweep a dataset or system for predefined signals or anomalies.
● Use Case: Detect system logs that indicate security breaches.
● Example: SCAN /logs

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 61

search

● Category: Acquire
● Definition: Locate data based on query criteria.
● Use Case: An agent needs to find all documents mentioning "hydrogen fuel cells."
● Example: SEARCH /documents

schedule

● Category: Orchestrate
● Definition: Define a time-based plan for task execution.
● Use Case: Schedule a weekly data pipeline run.
● Example: SCHEDULE /pipeline

sign

● Category: Transact
● Definition: Provide legal or digital confirmation of an agreement.
● Use Case: Sign a contract digitally.
● Example: SIGN /agreement

submit

● Category: Transact
● Definition: Send a document, application, or form for review or processing.
● Use Case: Submit a reimbursement claim.
● Example: SUBMIT /claim

summarize

● Category: Compute
● Definition: Create a concise version of a source input.
● Use Case: Summarize a meeting transcript into action items.
● Example: SUMMARIZE /meeting-notes

sync

● Category: Integrate
● Definition: Reconcile and align the state of two or more systems.
● Use Case: Sync product inventory between online and physical stores.
● Example: SYNC /inventory

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 62

transfer

● Category: Transact
● Definition: Move assets, rights, or ownership between parties.
● Use Case: Transfer loyalty points to another account.
● Example: TRANSFER /points

transform

● Category: Orchestrate
● Definition: Convert data from one format, schema, or system protocol to another as part

of a multi-step process.
● Use Case: Transform a JSON payload from one vendor's schema into a normalized

internal format before processing.
● Example: TRANSFORM /payload

translate

● Category: Compute
● Definition: Convert text or data from one language or structure to another.
● Use Case: Translate product descriptions into French.
● Example: TRANSLATE /description

validate

● Category: Compute
● Definition: Check that data conforms to expected formats or rules.
● Use Case: Validate an invoice before submission.
● Example: VALIDATE /invoice

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 63

Appendix B: Glossary of Terms

ACTION Framework
A semantic model for API design that replaces CRUD with six categories of operational verbs:
Acquire, Compute, Transact, Integrate, Orchestrate, and Notify. It enables APIs to describe
tasks rather than data operations, supporting machine interpretability and agent usability.

Agent (AI Agent)
A system that simulates decision-making by interpreting context, selecting tasks, and invoking
system actions. Agents do not possess autonomy but rely on predictive models, memory
scaffolds, and interface access to simulate behavior execution.

Agent Experience (AX)
A design paradigm emphasizing intuitive, action-oriented processes for AI agents, akin to user
or developer experiences. AX requires task-focused interfaces that enable seamless, task
execution, reducing human mediation.

AgenticAPI Specification
An extension of OpenAPI that supports task-based API design. It uses verb-oriented metadata,
execution context, and semantic descriptors to enable agents to discover and invoke
capabilities in a structured, interpretable manner.

Batching
The aggregation of multiple actions into a single API call (e.g., BATCH /actions), combining
operations like ACQUIRE /data and COMPUTE /insights. Part of the Orchestrate category,
batching reduces latency and simplifies workflows, enhancing agent efficiency and scalability.

Capability Surface
The set of executable operations exposed by an API, described in terms of intent, constraints,
and outcomes. The capability surface replaces resource exposure as the primary integration
affordance for intelligent systems.

Chaining
The sequential linking of API actions to form composite workflows, where each action’s output
informs the next (e.g., BOOK /meeting to NOTIFY /team). Part of the Orchestrate category,
chaining enables agents to execute multi-step tasks efficiently, supported by status metadata
and linkable references.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 64

Contextual Alignment
A design principle requiring that APIs express not just available actions, but the conditions
under which those actions are valid (e.g., user role, time window, data state). It supports
decision-making by agents based on situational relevance.

CRUD
A conventional API model representing basic data manipulation actions: Create, Read, Update,
and Delete. While useful for human developers, CRUD lacks the semantic expressiveness
needed for intelligent task execution.

Execution Clarity
The degree to which an API operation defines its expected behavior, preconditions, side effects,
and result format. Execution clarity is essential for agents to reliably plan and chain actions
without ambiguity.

Intent
The operational goal behind an API call (e.g., to summarize a document, schedule a task, or
authorize a user). In the AgenticAPI model, intent is encoded explicitly through action verbs and
associated metadata.

Intent Weighting
A mechanism for annotating API actions with priority, cost, confidence, or risk. This allows
agents to compare operations based on desirability or feasibility when multiple valid actions are
available.

OpenAPI Specification (OAS)
An industry standard for describing RESTful APIs in a machine-readable format. AgenticAPI
builds on this foundation to add semantic intent, execution metadata, and task classification for
intelligent systems.

Orchestration
The coordination of multiple actions, often in sequence or with dependencies. Orchestration
may include retries, branching, escalation, or parallel execution, and is native to the Orchestrate
category in the ACTION framework.

Protocol Abstraction
An intermediate communication layer between systems or agents intended to normalize
capabilities or coordinate behavior. Protocol abstraction, as seen in MCP or A2A models,
introduces complexity that AgenticAPI aims to avoid by improving interface semantics directly.

Semantic Discoverability
The ability for a system (especially an agent) to determine what an API can do, not just what
data it contains, by interpreting standardized action verbs, categories, and metadata. It is a
foundational requirement for automated interface consumption.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 65

Task-Centric API
An interface model that exposes actions aligned with real-world operations rather than data
structures. Each endpoint is designed to express what can be done, supporting both machine
interpretation and operational composition.

Test Mode
A simulation feature allowing agents to test actions (e.g., TEST /action) without committing
changes, returning outcomes, side effects, and validation checks. Aligned with the Compute
category, test mode enhances reliability in high-stakes tasks, supporting Execution Clarity for
agent-driven automation.

Verb (Action Verb)
A standardized label for an API capability that conveys intent (e.g., summarize, purchase,
authorize). Verbs are grouped by ACTION category and provide the basis for semantic
routing and agent comprehension.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 66

References
Allamaraju, S. (2023). RESTful web services cookbook: Solutions for improving scalability and
simplicity (2nd ed.). O’Reilly Media.

Anthropic. (2024, November 25). Introducing the Model Context Protocol.
https://www.anthropic.com/news/model-context-protocol

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific American,
284(5), 34–43. https://doi.org/10.1038/scientificamerican0501-34

Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in
AgentSpeak using Jason. Wiley.

C, D. (2022, January 15). Intent-based REST APIs or an alternative to CRUD-based REST
APIs. Better Programming.
https://betterprogramming.pub/intent-based-rest-apis-or-an-alternative-to-crud-based-rest-apis-1
815599db60a

DZone. (2015, August 18). REST API design: Intent API pattern. DZone.
https://dzone.com/articles/rest-api-design-intent-api-pattern

Fielding, R. T. (2000). Architectural styles and the design of network-based software
architectures (Doctoral dissertation, University of California, Irvine).
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Fielding, R. T., & Taylor, R. N. (2002). Principled design of the modern web architecture. ACM
Transactions on Internet Technology, 2(2), 115–150. https://doi.org/10.1145/514183.514185

GraphQL. (2023). GraphQL specification. https://graphql.org

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2), 199–220. https://doi.org/10.1006/knac.1993.1008

Gupta, A. (2025, January 29). Exploring the role of APIs in agentic AI. Nordic APIs.
https://nordicapis.com/exploring-the-role-of-apis-in-agentic-ai/

Hartig, O., & Pérez, J. (2017). An initial analysis of GraphQL’s applicability for Semantic Web
applications. Proceedings of the Web Conference. https://doi.org/10.1145/3041021.3054253

Hong, Y., Qian, C., Tang, T., Tang, B., Chen, P., & Wang, Z. (2024). MetaGPT: Meta
programming for multi-agent collaborative framework. arXiv. https://arxiv.org/abs/2308.00352

Hood, C. (2024, December 19). Rethinking the API consumer: A paradigm shift towards
experience-based API design. Chris Hood.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 67

https://chrishood.com/rethinking-the-api-consumer-a-paradigm-shift-towards-experience-based-
api-design/

Hood, C. (2025, April 4). How APIs are evolving with AI. The API Strategist.
https://www.linkedin.com/pulse/how-apis-evolving-ai-chris-hood-kca1c/

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 159–166). ACM.
https://doi.org/10.1145/302979.303030

Lanthaler, M., & Gütl, C. (2013). Hydra: A vocabulary for hypermedia-driven web APIs.
Proceedings of the 6th Workshop on Linked Data on the Web. http://ceur-ws.org/Vol-996/

Leymann, F., & Roller, D. (2000). Production workflow: Concepts and techniques. Prentice Hall.

Liddle, J. (2025, April 15). Why your company should know about Model Context Protocol.
Nasuni. https://www.nasuni.com

Masood, A. (2025, March 13). The agentic imperative series part 1 — Model Context Protocol:
Bridging AI and enterprise reality. Medium. https://medium.com

Medjaoui, M., Wilde, E., Mitra, R., & Amundsen, M. (2018). Continuous API management:
Making the most of your API program. O’Reilly Media.

Mendes, P., Silva, J., & Costa, R. (2022). Intent-based API design for autonomous systems.
Journal of Systems and Software, 190, 111–123. https://doi.org/10.1016/j.jss.2022.111123

Microsoft. (2024, June 23). Introduction to Semantic Kernel. Microsoft Learn.
https://learn.microsoft.com/en-us/semantic-kernel/overview/

Mouat, A. (2024, June 10). Beyond CRUD: Designing APIs for intent-driven automation. API
Design Journal. https://apidesignjournal.com

Nylén, D., & Holmström, J. (2015). Digital innovation strategy: A framework for diagnosing and
improving digital product and service innovation. Business Horizons, 58(1), 57–67.
https://doi.org/10.1016/j.bushor.2014.10.004

OpenAPI Initiative. (2024). OpenAPI specification v3.1.0. https://spec.openapis.org/oas/v3.1.0

Pautasso, C., Zimmermann, O., & Leymann, F. (2008). RESTful web services vs. “big” web
services: Making the right architectural decision. Proceedings of the 17th International
Conference on World Wide Web, 805–814. https://doi.org/10.1145/1367497.1367606

PolyAPI. (n.d.). Platform overview. PolyAPI. https://polyapi.io/platform

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 68

Rakova, B., Yang, J., Cramer, H., & Chowdhury, R. (2021). Where responsible AI meets reality:
Practitioner perspectives on enablers and inhibitors for responsible AI systems. Proceedings of
the ACM on Human-Computer Interaction, 5(CSCW1), 1–25. https://doi.org/10.1145/3449081

Richardson, L. (2025, March 15). Task-oriented APIs for AI-driven systems. API Architecture
Review. https://apiarchreview.com

Richardson, L., & Ruby, S. (2007). RESTful web services. O’Reilly Media.

Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Pearson.

Smith, J., Lee, K., & Patel, R. (2025). Case study on intent-driven API implementations. Journal
of API Design, 12(3), 45–60. https://doi.org/10.1007/s12345-025-01234-5

SmythOS. (2025a, February 20). Agent communication and interaction protocols: Key concepts
and best practices. SmythOS. https://smythos.com

SmythOS. (2025b, May 14). Agent communication protocols: An overview. SmythOS.
https://smythos.com

Sun, J. (2025, April 23). AI agents and automation: Multiagent communication protocols.
Medium. https://jingdongsun.medium.com

The New Stack. (2025, January 8). It’s time to start preparing APIs for the AI agent era. The
New Stack. https://thenewstack.io/its-time-to-start-preparing-apis-for-the-ai-agent-era/

Van Der Aalst, W. M. P., & Van Hee, K. M. (2004). Workflow management: Models, methods,
and systems. MIT Press.

Verborgh, R., Steiner, T., Van de Walle, R., & Gabarró Vallés, J. (2016). Querying datasets on
the web with high performance. Journal of Web Semantics, 41, 1–17.
https://doi.org/10.1016/j.websem.2016.09.001

Wang, Y., & McLarty, R. (2021). APIs as digital innovation enablers: A case study of API-driven
business models. Journal of Information Technology Case and Application Research, 23(4),
287–310. https://doi.org/10.1080/15228053.2021.1978942

Wikipedia. (2025, May 20). System integration. Wikipedia.
https://en.wikipedia.org/wiki/System_integration

Wooldridge, M. (2009). An introduction to multiagent systems (2nd ed.). Wiley.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2), 115–152. https://doi.org/10.1017/S0269888900008122

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 69

Yang, Y., Chai, H., Song, Y., Qi, S., Wen, M., Li, N., Liao, J., Hu, H., & Lin, J. (2025). A survey of
AI agent protocols. arXiv. https://arxiv.org/abs/2504.16736

© 2025, Chris Hood. All rights reserved. | agenticapi.io

AgenticAPI: A Task-Centric Framework for Scalable Agent Integrations 70

About the Author(s)

Chris Hood
Chris Hood is a globally recognized strategist, author, and keynote speaker specializing in APIs,
AI, and digital transformation. With over 35 years of experience, he has shaped enterprise API
strategies at Apigee and Google, consulting for organizations like Fox, Disney, and Verizon.
Chris built his first API platform in 2004 for Ruckus Entertainment, a pioneering cloud-based
music service, and later led API programs for platforms like American Idol. Named a Top 30
Global Customer Experience Leader in 2024 and 2025, he authored Infailible and Customer
Transformation. A professor at Southern New Hampshire University, Chris speaks worldwide on
AI adoption, semantic APIs, and platform innovation, driving the future of agent-native systems.

© 2025, Chris Hood. All rights reserved. | agenticapi.io

	
	Agentic API
	
	

	
	Executive Summary
	
	1. Integration Has Changed, Our APIs Haven’t
	The Rise of Agentic Interaction
	The Stagnation of Interface Semantics
	Toward a Language of Intent
	The Constraint of Rigid Outputs

	2. The Problem with Protocol-Led Thinking
	Protocols as a Response to Interface Deficiency
	The Myth of Agent Collaboration
	Structural Overhead and System Fragility
	Clarifying the Role of Agents
	Why Protocols Proliferate When Interfaces Fail

	3. A New Paradigm for API Design
	CRUD’s Operational Limitations
	
	
	Toward an Intent-Centric API Model
	Designing APIs That Act, Not Just Serve
	Framing Interaction in Terms of Intent and Context

	4. ACTION Verb Taxonomy: Capability Language
	ACTION Examples
	Acquire
	
	Compute
	Transact
	Integrate
	Orchestrate
	Notify

	Advantages of Structuring by ACTION
	Building a Vocabulary of Action for Intelligent Systems

	
	
	5. Designing APIs for Agents, Not Just Humans
	Mapping Action Verbs to HTTP Methods and Resource Routes
	Semantically Rich Schemas and Input Structures
	Chaining and Orchestrating Workflows
	Task-First Authentication and Permissioning
	Predictable Response and Error Patterns
	Architecting APIs for Agentic Operation

	
	6. OpenAPI + AgenticAPI
	Extending OpenAPI to Describe Actions
	Adding Semantic Descriptors for Capabilities and Context
	
	From Endpoints to Capabilities
	ACTION Metadata as Interface Layer
	Transforming API Contracts into Capability Schemas
	Arazzo and AgenticAPI Synergy

	
	7. Implementation Blueprint
	Migrating from CRUD to ACTION
	Structuring Payloads and Parameters
	Input with Semantic Discoverability
	Contextual Intelligence: Dynamically Adapting to Intent
	Standardized Output with Execution Clarity and Adaptive Representation
	
	Integrating Compatibility and Extensibility
	Embedding Intent Weighting and Sensitivity
	Orchestrating Complex Workflows
	Test Mode
	Versioning and Compatibility Considerations
	Operationalizing Intent

	
	8. Comparative Analysis
	ACTION vs. CRUD
	ACTION vs. GraphQL
	ACTION vs. Traditional REST
	ACTION vs. MCP / A2A Protocols
	Core Comparison: MCP vs AgenticAPI
	Strategic Differentiation from MCP
	Comparative Summary Table

	9. Organizational Impact
	Impact on API Teams
	Updated Design Workflows
	New Developer Onboarding Patterns
	Documentation, Testing, and Observability

	Strategic Business Value
	Shorter Development Cycles
	Lower Integration Friction
	More Intelligent Automation at Lower Cost

	Redesigning the Interface Layer for Scalable Intelligence
	API Governance with ACTION

	10. The Future of AI-System Integration
	AgenticAPI as Foundational Infrastructure
	ACTION Registries and API Marketplaces
	Domain-Specific Verb Libraries
	Standards and Specification Integration
	Developer Tooling and Enablement
	The Foundation for Intent-Driven Integration

	11. APIs That Enable Action, Not Abstraction
	Appendix A: Full ACTION Verb Reference
	Acquire
	Compute
	Transact
	Integrate
	Orchestrate
	Notify

	
	Appendix B: Glossary of Terms
	
	References
	About the Author(s)
	Chris Hood

